D-Fence: A Flexible, Efficient, and Comprehensive Phishing Email Detection System

Jehyun Lee[†], Farren Tang[†], Pingxiao Ye[†], Fahim Abbasi[†], Phil Hay[†], Dinil Mon Divakaran ^{†*}

[†]Trustwave, ^{*}NUS

Jehyun.Lee@trustwave.com

Phishing Email: Major Security Concern for Organizations

Previous works

- □ Focusing on specific email component: Evadable by changing attack vector
- Limited single model performance: Limitation of ML models in nature

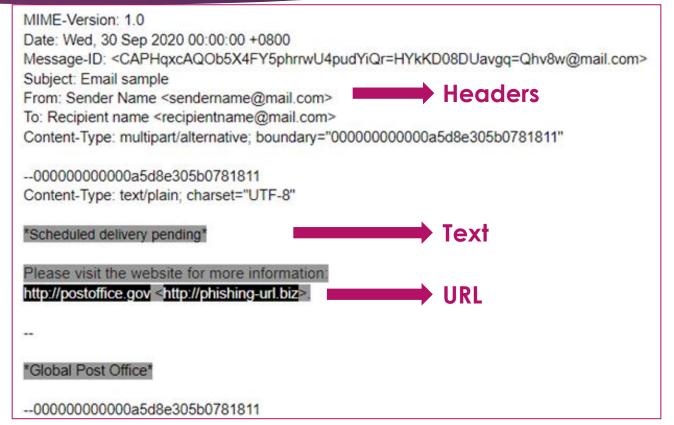
□ Proposal: Multi-modular phishing email detection system with sophisticated analysis models

- Structure module: Email headers and HTML structures capturing statistical characteristics.
- **Text module**: Text classification with pre-trained text vectorization model (BERT)
- **URL module**: Deep-learning-based URL string modelling and classification

□ 0.99+ detection sensitivity (Recall) at a low false-positive rate (1 in 10K)

Evaluated with 68K of recent phishing email samples and 224K of benign samples

Motivation


Shortcomings in Targeting single email component

Email Header Analysis

- [+] Useful in detecting (large-scale) spamming of phishing emails
- □ [-] Easy to evade in spear phishing

Readable text Analysis

- [+] Useful in Message-centric phishing
- [-] Evadable by Image-based emails
- □ [-] Bad at short / neutral texts

3

Email sample with various Email Components (Header and Plain text Section)

Motivation (cont')

Shortcomings in Targeting single email component

HTML structure Analysis

- □ [+] Source of phishing techniques
 - e.g., Scripts, Hidden hyperlinks
- [-] Do not cover Message-centric phishing

Embedded URL Analysis

- □ [+] Wide phishing coverage
 - Most of the phishing email has a URL
- □ [-] Short living contents

Content-Type:	text/html; charset="UTF-8"
Content-Trans	fer-Encoding: quoted-printable
<div dir='3D"ltr</td'><td>">Scheduled delivery</td></div>	"> Scheduled delivery
pending	<div> </div> <div><div>Please visit the website for more information. <a< td=""></a<></div></div>
href=3D"http://	/phishing-url.biz">
http://postoffice	e.gov. <div><br cle="</td"/></div>
ar=3D"all"> <di< td=""><td>iv> <div class='3D"mail_signature"=</td' dir='3D"ltr"'></div></td></di<>	iv> <div class='3D"mail_signature"=</td' dir='3D"ltr"'></div>
data-smartma	ail=3D"mail_signature"> <div dir='3D"ltr"'><div dir='3D"ltr"'><div =<="" td=""></div></div></div>
dir=3D"ltr"> <d< td=""><td>iv dir=3D"ltr"><div dir='3D"ltr"'><div dir='3D"ltr"'><div dir='3D"=</td'></div></div></div></td></d<>	iv dir=3D"ltr"> <div dir='3D"ltr"'><div dir='3D"ltr"'><div dir='3D"=</td'></div></div></div>
Itr"> <div dir="3</td"><td>D"ltr"><div dir='3D"ltr"'><div dir='3D"ltr"'><p style='3D"margin:=</td'></p></div></div></td></div>	D"ltr"> <div dir='3D"ltr"'><div dir='3D"ltr"'><p style='3D"margin:=</td'></p></div></div>
Ocm Ocm Opt">	> Global Post
Office <td>nt> </td>	nt>
>	

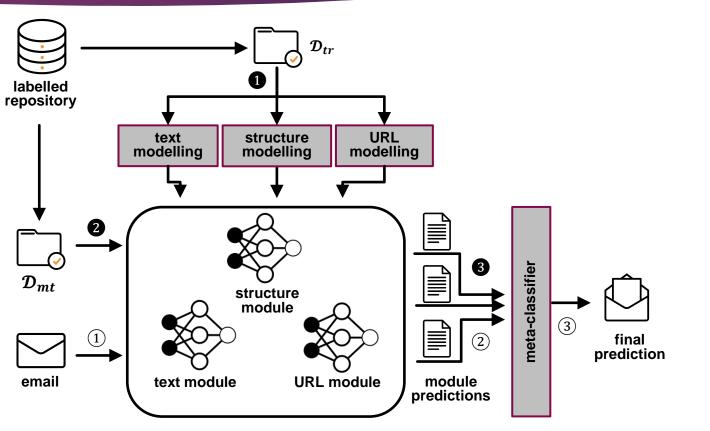
4

--000000000000a5d8e305b0781811--

Email sample with Various Email Component (HTML Section)

D-Fence: Overview

Three Independent Analysis Modules


- Wide component coverage
- Extensible

No External Information Sources

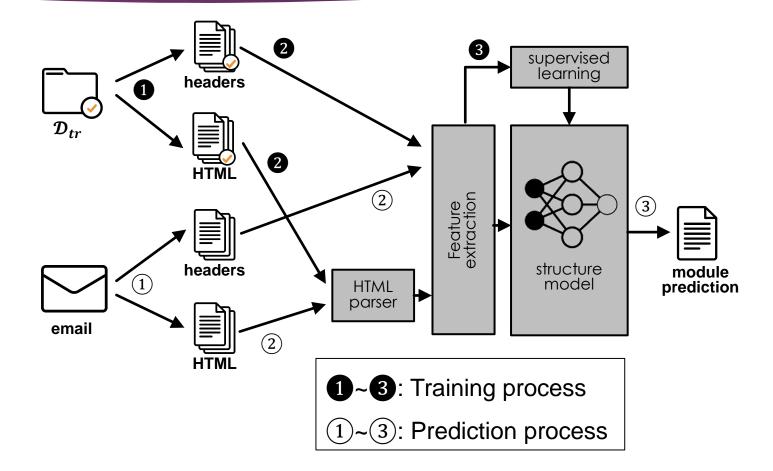
- Stand-alone solution
- No up-to-date repository required
- No external communications

Flexible model configuration / Update

• e.g., Feature modification, model update, module addition., etc.

D-Fence: Structure Module (1/4)

Analysis Component


Email Header and HTML section

Feature set

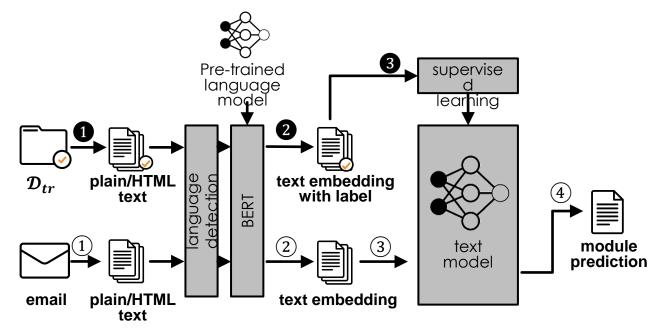
- □ 63 Structural features
- □ 10 Feature categories

Classification

 Probability prediction with a supervised learning model

D-Fence: Text Module (2/4)

Analysis Component


Texts from text/plain and text/html sections

Text Vectorization

- Sentences to numeric vectors
- BERT: Bidirectional Encoder
 Representations
 from Transformers

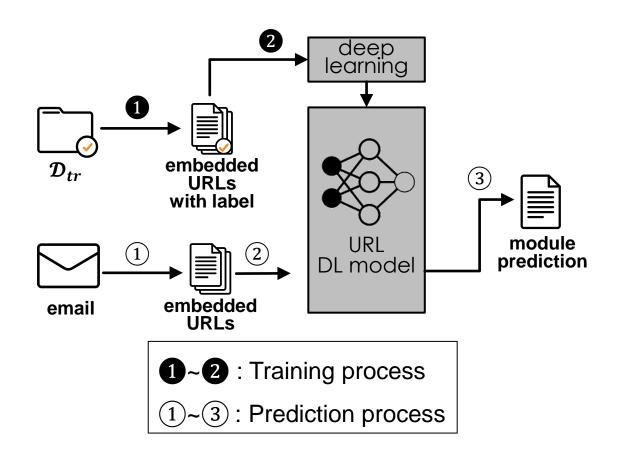
Classification

 Probability prediction with a supervised learning model

1~3 : Training process
1~4 : Prediction process

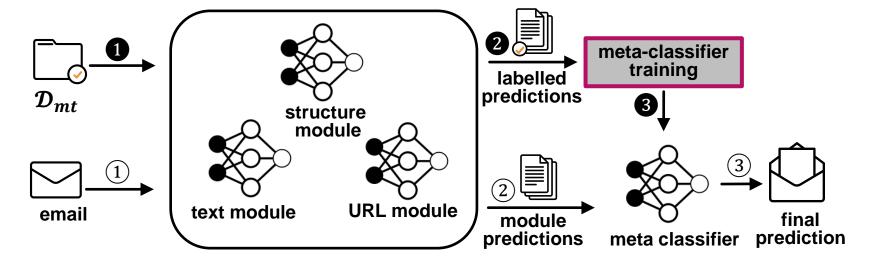
D-Fence: URL Module (3/4)

Analysis Component


URL strings in text/plain and text/html sections

Feature set

Encoded characters in a URL string


Modelling and Classification

- CNN-LSTM
- Multiple URLs in an email: multiple predictions
- Classification of an email: Maximum prediction of all embedded URLs

D-Fence: Meta-classifier (4/4)

- Learning prediction confidence and correlation of the individual module's prediction
- **Training**: Prediction values from individual modules for Meta-classifier training set \mathcal{D}_{mt}
- **Prediction**: Three module prediction values into one final prediction value

Evaluation: Enterprise Email Dataset (EES 2020)

	Email	sampl	es froi	m enter	prises
--	-------	-------	---------	---------	--------

- Benign emails reviewed by users as Benign
- Phishing emails detected by multiple solutions
- □ Collected in 2018 ~ 2020

292K unique samples

Benign: 224K, Phishing: 68K

Content	Source	Label	No. of samples	Ratio
	Any	Benign Phishing	212200 64587	94.67% 95.59%
Text	text/plain	Benign Phishing	188261 12039	83.99% 17.82%
	text/html	Benign Phishing	136084 59016	60.71% 87.35%
HTML	text/html	Benign Phishing	173542 62488	77.43% 92.49%
URL All		Benign Phishing	197087 67559	87.93% 99.99%
Total All		Benign Phishing All	224137 67565 291702	100% 100%

Evaluation: Model Selection

AUPRC, and Recall at Fixed False-positive rate 0.001 (10⁻³). Tested with EES 2020 dataset

Structural Module

Model	AUPRC	Recall	Train (s)	Test (ms)
RandomForest	0.9993	0.9933	5	0.01
XGBoost	0.9994	0.9884	10	0.01
SVM (SVC)	0.9969	0.9618	919	0.55
Naive Bayes	0.8940	0.0	2	0.01

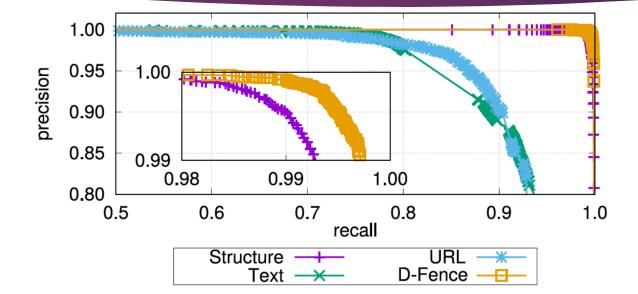
Text Module

Model (BERT+)	AUPRC	Recall	Train (s)	Test (ms)
RandomForest	0.9757	0.7796	61	0.01
XGBoost	0.9746	0.6995	560	0.02
SVM (SVC)	0.8310	0.0776	48392	8.44
Naive Bayes	0.7353	0.0	3	0.02

11

URL Module

Architecture	AUPRC	Recall	Train (s)	Test (ms)		Models for Cost-efficient Configuration Analysis
CNN	0.9406	0.5775	302	0.76		
LSTM	0.9149	0.5787	7728	14.41		Models for
CNN-LSTM	0.9851	0.7648	4247	7.85	┝ →	Best-Accuracy Evaluation


Evaluation: Comparison with Baselines

10-Cross-fold validation (90:10 splits). Recall at 10⁻³ FPR

	System	AUPRC (σ)	Recall (σ)
Baselines	Legacy structure features+RF Text Word2Vec+LSTM URL CNN-LSTM	0.9985 (0.0002) 0.8313 (0.0074) 0.9851 (0.0031)	0.1365 (0.0023)
Our proposals	Combined structure features+RF Text BERT+RF D-Fence	0.9993 (0.0003) 0.9757 (0.0039) 0.9997 (0.0001)	0.9933 (0.0017) 0.7796 (0.0038) 0.9935 (0.0013)

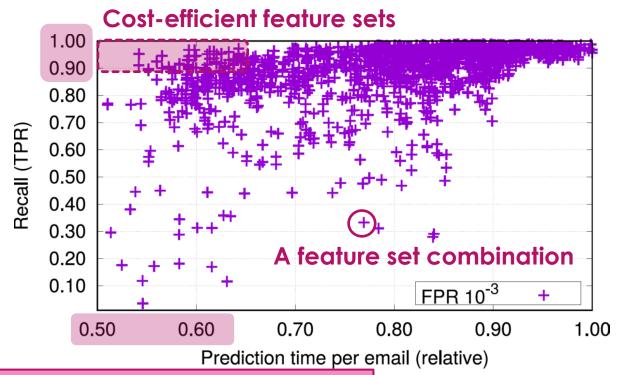
Evaluation: Recall at 10⁻⁴ FPR

EES 2020 Dataset. Best Accuracy Configuration.

	AUPRC	Recall (10 ⁻³ FPR)	Recall (10 ⁻⁴ FPR)
Structure module	0.9994	0.9878	0.9428
Text module	0.9192	0.6182	0.2710
URL module	0.9492	0.8806	0.7721
D-Fence	0.9995	0.9932	0.9844

4% more detection e.g., 1K more phishing emails in our test set

Cost Reduction: Structural Module


Feature set Reduction

Feature selection by Feature Category

- □ 10 Feature categories
- □ e.g., Msg-ID features, Link features, .., etc.
- Test on 2¹⁰ Feature set combinations
 - A point + on plot indicates one combination

Cost-Efficient Features

Less feature extraction time but high accuracy

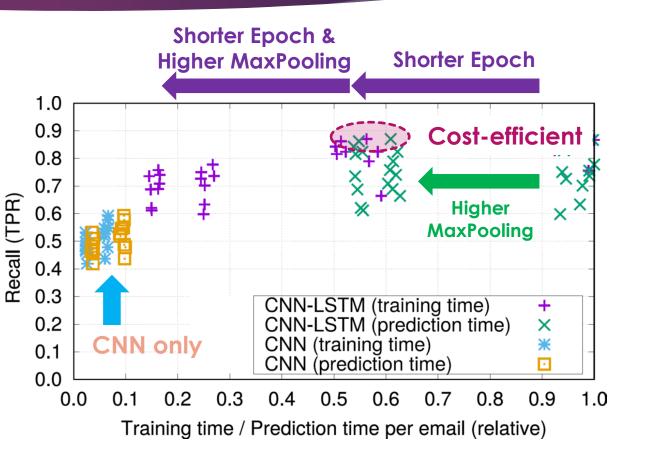
14

~50% Prediction time reduction from Reduced feature set with keeping 95%+ Recall at FPR 10⁻³

Cost Reduction: URL Module

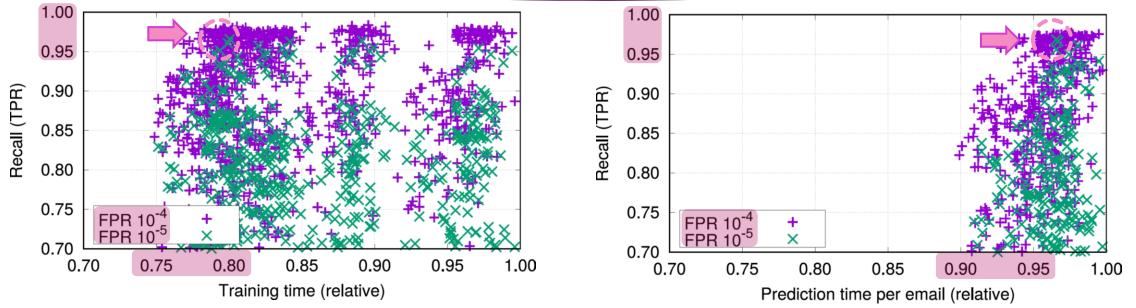
Hyper-parameter tuning: Simpler/Faster Neural network

Shorter training Epoch


- Advantage: Shorter training time
- Cost: Loss in accuracy

Higher Max Pooling

Advantage: Shorter training/prediction time


CNN (without LSTM layer)

- Advantage: Faster training/prediction
- Cost: Large loss in accuracy

Cost-Efficient Configuration

Combinations of the module configurations

16

- Text module fixed as the fastest configuration. (100 words analysis)
- □ A pair of points (purple and green) : one config combination

~20% of Training time reduction from mainly Deep-learning for URL
 ~10% of Prediction time reduction from URL and Structure module with 0.95+ Recall at 10⁻⁵ FPR

D-FENCE: Flexible Multi-modular phishing email detection system

- Wide component coverage with comprehensive detection: little evasion surface
- Low False-detection powered by independent analysis modules supplementing each other
- Evaluated with near **300K** of real-world Enterprise email dataset

Cost-efficient Configuration

- Synergetic configuration: Better than combination of the best individual configurations
- Training time reduction without harming accuracy

Thank YouQ & A