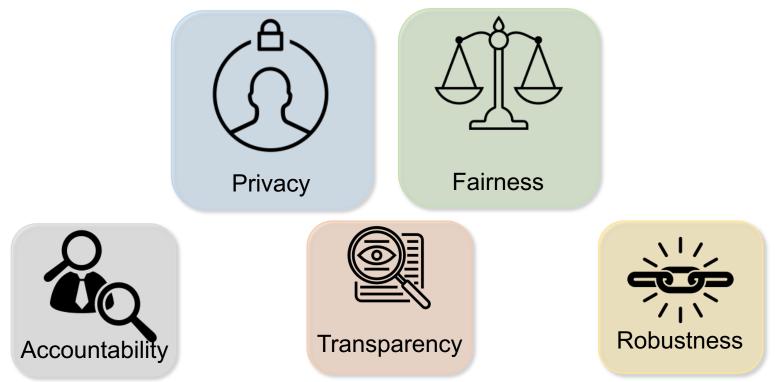
On the Privacy Risks of Algorithmic Fairness

Hongyan Chang, Reza Shokri National University of Singapore

hongyan@comp.nus.edu.sg, reza@comp.nus.edu.sg

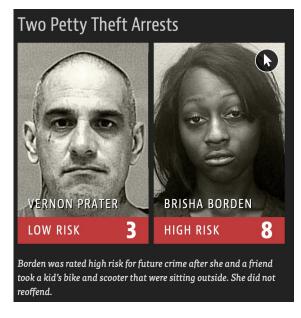
Ethical Al



User Privacy by Yair Cohen, Scale by Douglas Machado, Search User by Francisco Garcia Gallegos, Transparency by Wichai Wi from the Noun Project

ML models are not neutral

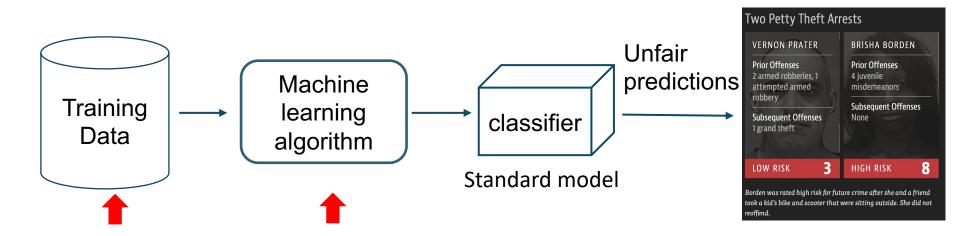
Recidivism prediction



VERNON PRATER	BRISHA BORDEN Prior Offenses 4 juvenile misdemeanors Subsequent Offenses None		
Prior Offenses 2 armed robberies, 1 attempted armed robbery			
Subsequent Offenses 1 grand theft			
LOW RISK 3	HIGH RISK		

Source from: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

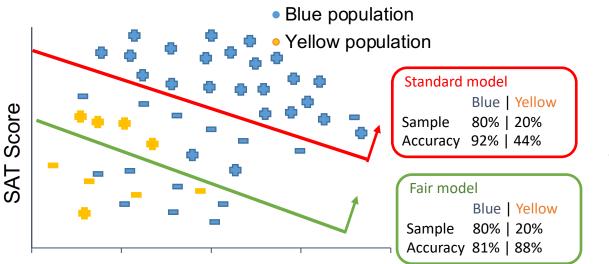
Bias in ML



- Data bias : training data can reflect the human bias
- Algorithmic bias: the model is learned to minimize the overall loss

Fairness in ML

• Equalized odds: TPR and TNR should be similar across protected groups that are defined by a sensitive attribute (e.g., race, gender)



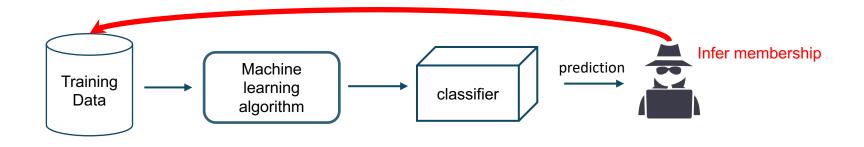
Side effect: increase the influence of the training data from underprivileged group on the learned model

GPA Score

Hardt, Moritz, Eric Price, and Nathan Srebro. "Equality of Opportunity in Supervised Learning." NeurIPS 2016 Example is from Michael Kearns & Aaron Roth talk at Google

Fairness meets privacy

Membership inference attack: infer whether an individual's data is in the training dataset or not



Dwork, Cynthia, et al. "Calibrating noise to sensitivity in private data analysis." TCC, 2006. Shokri, Reza, et al. "Membership inference attacks against machine learning models." *SP*, 2017.

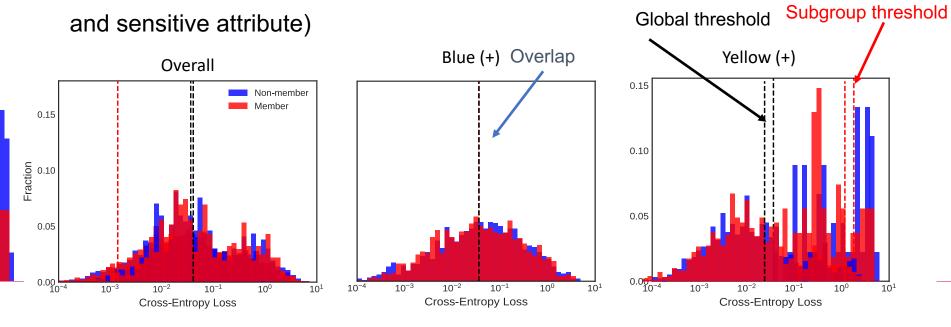
Membership inference attack

Purchase Dataset, 100 Classes, Google, Membership Inference Attack Members Non-members 0.8 Attack model 0.6 Non-members Members 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0 0.6 0.9 1 Prediction Uncertainty From Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." SP, 2017.

Our attack strategy

• Our proposal: find an attack model for each subgroup (defined by the label



Synthetic dataset

Attack accuracy

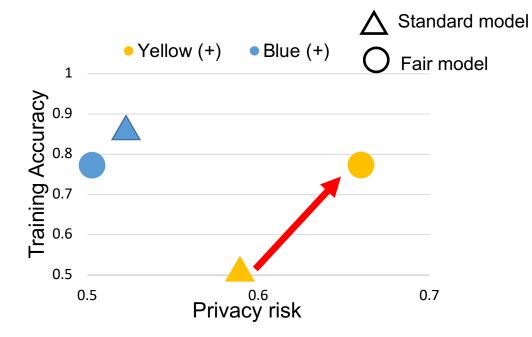
• Synthetic data with equalized odds (fairness gap is 0.001)

Attack Strategy	Target model	Yellow (+)	Blue (+)	Yellow (-)	Blue (-)	
Single attack model	Standard	0.529	0.512	0.518	0.512	
	Fair	0.608	0.528	0.524	0.522	
Subgroup based attack	Standard	0.618	0.528	0.524	0.522	
	Fair	0.692	0.534	0.525	0.515	

Privacy cost = Privacy risk on fair model - Privacy risk on unconstrained model

Achieving group fairness increases the privacy risk of underprivileged subgroup

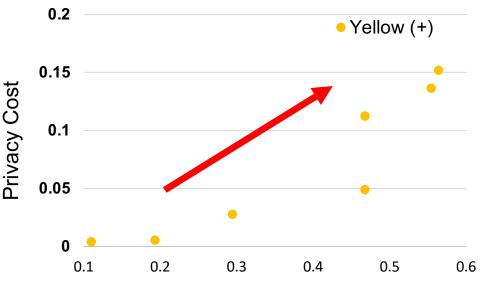
• Synthetic data with equalized odds (fairness gap is 0.001)



Fair model improves the accuracy but leaks more information on yellow population

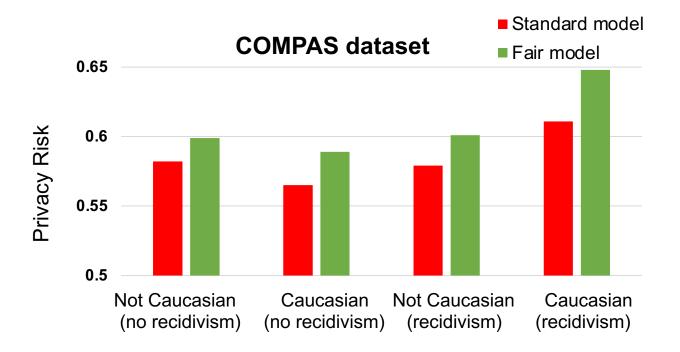
Trade-off between group fairness and privacy

When there are more needs for fairness, privacy cost of achieving fairness is higher



Unfairness (fairness gap) of the standard model

Real world data



Takeaways

- Group fairness based on equalizing error across groups comes at the cost of privacy
- Privacy cost is not distributed equally across groups
- "Protecting" underprivileged groups using fair ML increases their privacy risks