
Compiler-Assisted Hardening of Embedded Software

Against Interrupt Latency Side-Channel Attacks

Hans Winderix, Jan Tobias Mühlberg, Frank Piessens

1 / 11

Microarchitectural side-channel attack

Exploits fetch-decode-execute logic

Attacker measures interrupt latency

Reveals the latency trace of an execution, i.e.

Machine instruction count

Timing of individual machine instructions

Reveals which side of branch has been executed

Leaks info about branch predicate values

Nemesis, an Interrupt Latency Side-Channel Attack

2 / 11

 CMP R12, R13
 JEQ TRUE
FALSE:
 ADD R12, R12 /* 1 cycle */
 JMP EXIT /* 2 cycles */
TRUE:
 MOV $20, R12 /* 2 cycles */
 ADD R13, R13 /* 1 cycle */
EXIT:
 ...

1: CMP R12, R13

2: JEQ TRUE

3: ADD R12, R12 (1)

4: JMP EXIT (2)

3: MOV $20, R12 (2)

4: ADD R13, R13 (1)

...

Nemesis - Illustrative Example

3 / 11

Constant-Time Programming Policy
An established security policy

To protect against timing side-channel attacks

No secret-dependent control-flow

No secret-dependent memory accesses

No secret-dependent instruction latencies

No secret-dependent control-flow

No secret-dependent branch instructions

Effective protection against Nemesis

4 / 11

Constant-Time Programming Policy (Concerns)

Strict rules with a status of absoluteness

Typically manually implemented at the highest abstraction level (source code)

Harms readability and maintainability

Prevents using familiar programming constructs

Developer must use obscure tricks to deceive compiler (brittle)

No separation of concerns (harms portability)

Tight coupling between security policy and source code

Policy must be honored by the compiler early on (brittle)

Optimiser cannot introduce secret-dependent constructs

Compiler cannot introduce secret-dependent constructs when lowering abstractions

Performance impact
5 / 11

 /* Hardened program (balanced branch) */
 CMP R12, R13 /* 1 cycle , 1 byte */
 JEQ TRUE /* 2 cycles, 1 byte */
FALSE:
 ADD R12, R12 /* 1 cycle , 1 byte */
 JMP EXIT /* 2 cycles, 1 byte */
TRUE:
 ADD R13, R13 /* 1 cycle , 1 byte */
 MOV $20, R12 /* 2 cycles, 2 bytes */

 Time (cycles) Size (bytes)

Balanced 6 7

Eliminated 22 22

 CMP R12, R13
 JEQ TRUE
FALSE:
 ADD R12, R12 /* 1 cycle */
 JMP EXIT /* 2 cycles */
TRUE:
 MOV $20, R12 /* 2 cycles */
 ADD R13, R13 /* 1 cycle */

/* Hardened program (eliminated branch) */
CMP R12, R13 /* 1 cycle, 1 byte *
MOV R2 , R10 /* 1 cycle, 1 byte R2 is status register *
RRA R10 /* 1 cycle, 1 byte *
AND $1 , R10 /* 1 cycle, 1 byte extract Z bit *
ADD $-1, R10 /* 1 cycle, 1 byte store TRUE mask *
MOV R10, R11 /* 1 cycle, 1 byte *
XOR $-1, R11 /* 1 cycle, 1 byte store FALSE mask *
MOV R12, R9 /* 1 cycle, 1 byte store original value *
AND R10, R9 /* 1 cycle, 1 byte apply TRUE mask *
ADD R12, R12 /* 1 cycle, 1 byte actual computation *
AND R11, R12 /* 1 cycle, 1 byte apply FALSE mask *
BIS R13, R12 /* 1 cycle, 1 byte conditional select *
MOV R12, R9 /* 1 cycle, 1 byte store original value *
AND R11, R9 /* 1 cycle, 1 byte apply FALSE mask *
MOV $20, R12 /* 1 cycle, 1 byte actual computation *
AND R11, R13 /* 1 cycle, 1 byte apply TRUE mask *
BIS R9 , R12 /* 1 cycle, 1 byte conditional select *
MOV R13, R9 /* 1 cycle, 1 byte store original value *
AND R11, R9 /* 1 cycle, 1 byte apply FALSE mask *
ADD R13, R13 /* 1 cycle, 1 byte actual computation *
AND R11, R13 /* 1 cycle, 1 byte apply TRUE mask *

/

6 / 11

Research Hypothesis
The constant-time programming policy is not absolute

Relaxing the constant-time rules can be secure (depends on leakage model)

Relaxing the constant-time rules can produce more performant programs

Balancing branches is an effective countermeasure against timing attacks on some low-end processors

Objectives
Decouple security policy from source code

Automate program hardening

Make latency trace secret-independent

Balance secret-dependent branches (instead of eliminating them)

Less overhead (compared to eliminating branches)

7 / 11

Assumptions
Attacker model

Access to cycle-accurate clock

Ability to precisely schedule and handle interrupts

Attacker can interrupt victim code running in another protection domain

System model

Interrupts are handled upon instruction retirement

Execution environment leaks latency trace of execution

A dummy instruction can be constructed for every latency class

Dummy instruction

An instruction without observable effects besides its time to execute

8 / 11

The Defense
A Recursive Control-Flow Graph Algorithm

Phase 1 - Static analysis

Taint analysis, loop analysis

Phase 2 - Program hardening

Balance secret-dependent branches according to their latency trace

 Insert dummy instructions if latencies don't match

Three operations

1. Equalise path lengths

2. Compute level structure

3. Equalise execution times (level-wise)
9 / 11

Implementation
LLVM compiler infrastructure

MachineFunction pass

MSP430 backend

Evaluation
Platform = openMSP430 + Sancus TEE extensions

Benchmark suite, consisting of

Synthetic programs

Third-party programs

 https://github.com/hanswinderix/sllvm 10 / 11

https://github.com/hanswinderix/sllvm

Experimental Results (openMSP430)

11 / 11

