

University of Stuttgart Institute of Information Security

·)+()

DY*: A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code

EuroSP'21 | reprosec.org

Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

- Ubiquitous HTTPS: TLS 1.3, QUIC, ACME/Let's Encrypt, ...
- Secure Messaging: Signal, MLS, ...
- Single-Sign On: OAuth, OIDC, SAML, ...
- Wireless: Wifi/WPA, 4G, 5G, Zigbee, ...
- Payment: EMV, W3C Web Payments, ...
- Post-Quantum Crypto: NIST KEMs, Signature, ...
- Lightweight Crypto: IETF LAKE, NIST LWC

8

Q

INSIDER

COMPUTERWORLD UNITED STATES -

EMV flaw allows 'pre-play' attacks on chip-enabled payment cards

Cambridge university researchers find weaknesses in the EMV protocol that can facilitate cloning-like attacks for chip-and-PIN payment cards Payment: ENTY, WSC Web Payments, ...

- Post-Quantum Crypto: NIST KEMs, Signature, ...
- Lightweight Crypto: IETF LAKE, NIST LWC

UIC

Wi Fi)

SAMU2.0

• Asynchronous continuous key exchange

DY* - Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

•

- Asynchronous continuous key exchange
- Multiple subprotocols
 - X3DH (initial key exchange)
 - DH Ratchet (post-compromise security)
 - Hash Ratchet (forward security)
 - Authenticated Encryption (message security)

- Asynchronous continuous key exchange
- Multiple subprotocols
 - X3DH (initial key exchange)
 - DH Ratchet (post-compromise security)
 - Hash Ratchet (forward security)
 - Authenticated Encryption (message security)
- Inherently recursive
 - Security of each message depends on a chain of derived keys

- Asynchronous continuous key exchange
- Multiple subprotocols
 - X3DH (initial key exchange)
 - DH Ratchet (post-compromise security)
 - Hash Ratchet (forward security)
 - Authenticated Encryption (message security)
- Inherently recursive
 - Security of each message depends on a chain of derived keys
- Can we mechanically verify that the protocol is secure?

Formalizing Signal

Formalizing Signal

- Existing Analyses
 - Using ProVerif and CryptoVerif
 - Model X3DH, Double Ratchet
 - Few hundred lines written in applied pi calculus

Formalizing Signal

- Existing Analyses
 - Using ProVerif and CryptoVerif
 - Model X3DH, Double Ratchet
 - Few hundred lines written in applied pi calculus
- One major limitation of existing analyses: Proofs for only 3 message rounds due to recursion

Computational Tools: CryptoVerif, EasyCrypt, ...

- Focus on cryptographic core
- Messages are bitstrings
- Probabilistic

Symbolic Tools: ProVerif, Tamarin, RCF, ...

- Abstract cryptography
- Messages are formal terms

Computational Tools: CryptoVerif, EasyCrypt, ...

- Focus on cryptographic core
- Messages are bitstrings
- Probabilistic

Symbolic Tools: ProVerif, Tamarin, RCF, ...

- Abstract cryptography
- Messages are formal terms

DY-style tools: Tamarin, ProVerif, ... Dependent Types:

DY-style tools: Tamarin, ProVerif, ... Dependent Types: RCF, F7, ...

DY-style tools: Tamarin, ProVerif, ...

focus on protocol core

* abstract models

* bounded data structures

- * no modularity
- Iimited inductive reasoning
- x interoperability

- automated analysis
 (potentially some user interaction)
- ✓ global trace &
- properties
- equational theories

Dependent Types: RCF, F7, ...

DY-style tools: Tamarin, ProVerif, ...

focus on protocol core

- * abstract models
- * bounded data structures
- * no modularity
- Iimited inductive reasoning
- x interoperability

- automated analysis
 (potentially some user interaction)
- ✓ global trace & properties
- equational theories

- modular proofs
- implementation
 level analysis
- unbounded
 - structures
- inductive reasoning
- executable models
- interoperability

Dependent Types: RCF, F7, ...

focus on implementation aspects

- × missing global view
- Iimited expressivity w.r.t. security prop.
- Iimited support for mutable state
- Iess automation
- * no equational theories (e.g., DH)

DY-style tools: Tamarin, ProVerif, ...

focus on protocol core

- × abstract models
- * bounded data structures
- × no modularity
- Iimited inductive reasoning
- x interoperability

interoperability

Dependent Types: RCF, F7, ...

focus on implementation aspects

- × missing global view
- Iimited expressivityw.r.t. security prop.
- Iimited support for mutable state
- Iess automation
- * no equational theories (e.g., DH)

What is F*?

- Functional programming language aimed at program verification
 - Can be used to precisely express strong (security) properties
- Developed and actively supported by Microsoft Research, INRIA, and others
- Already used for computational protocol analysis (for example, parts of TLS 1.3)
- Rich, versatile type system
 - Dependent and refinement types
 - Backed by SMT-Solver Z3
 - Pre/post conditions
 - Allow modeling unbounded and recursive data structures

Case Studies

Case Studies

- Signal Messaging Protocol
 - Unbounded number of rounds (ratcheting)
 - Forward Secrecy & Post Compromise Security

• Needham-Schroeder(-Lowe), ISO-DH, and ISO-KEM

Contraction Signal

Conclusion & Future Work

- Golden era of cryptographic protocols
- We recently proposed DY*, a new mechanized symbolic verification framework for protocols and

their code

- Overcomes many limitations of existing tools
- Precise reasoning on global properties
- Account for low-level protocol details
- Protocol models can even be interoperable

Conclusion & Future Work

- Golden era of cryptographic protocols
- We recently proposed DY*, a new mechanized symbolic verification framework for protocols and

their code

- Overcomes many limitations of existing tools
- Precise reasoning on global properties
- Account for low-level protocol details
- Protocol models can even be interoperable

- Lots of interesting work to be done!
 - Equivalence properties
 - Computational analysis
 - WIM*: mechanize the Web Infrastructure
 Model

See [S&P '14, ESORICS '15, CCS '15, CCS '16, CSF '17, S&P '19]

Conclusion & Future Work

- Golden era of cryptographic protocols
- We recently proposed DY*, a new mechanized symbolic verification framework for protocols and

their code

- Overcomes many limitations of existing tools
- Precise reasoning on global properties
- Account for low-level protocol details
- Protocol models can even be interoperable

- Lots of interesting work to be done!
 - Equivalence properties
 - Computational analysis
 - WIM*: mechanize the Web Infrastructure
 Model

See [S&P '14, ESORICS '15, CCS '15, CCS '16, CSF '17, S&P '19]

Find more information on: reprosec.org

DY* - Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

Thank you!