Fully Distributed Verifiable Random Functions and
their Application to Decentralised Random Beacons

EuroS&P 2021

David GalindoAt, Jia Liux , Mihai Ordeant, Jin-Mann Wong*¥

AValory, Switzerland
tUniversity of Birmingham, UK
xFetch.ai, UK
¢*British Antartic Survey, UK

{ david.galindo@valory.xyz, d.galindo@bham.ac.uk }

mailto:david.galindo@valory.xyz
mailto:d.galindo@bham.ac.uk

Verifiable random functions (VRF)
* First introduced by Micali, Rabin and Vadhan in 1999

* A keyed cryptographic hash function
v'(pk,sk) « KG(1)
‘/(Ux' T[x) N Fsk (x)
v Verify(pk, v, m,, x): publicly verifiable
v’ Fy (x) is pseudorandom for PPT adversaries

e |ETF is pursuing standardization of a verifiable random function
* Chainlink has a VRF oracle offering

Verifiable (Pseudo-)Randomness: What For?

“Convince those that did not win that the winning party
was chosen fairly: pseudorandom, unbiased,
unpredictably”

Applications:

* Lotteries

* Leader selection (Byzantine Agreement, Proof-of-Stake consensus)
* Electronic auctions

* Gaming

DVRFs — Synchronous Setup Phase

Global Public Output: pk, (vk4, ..., Vk,)
Local Secret Output: (sky, ..., Sk;)

DVRFs — Asynchronous Randomness Generation

(sk, pk)

8) (v, 1) <« Fy, (%)

(skq,vkq) \
Fi (x) < Combine({v;, m;};),

8 —— (v, ;) < Fski(x) | > L€ U Jee1}
(Ski,Uki)

(0XoXN©)

Verify(pk, F. (x),x) = 1

000

8) (VpTy) < Fg, (%)
(sk,, vk,)

Distributed Random Beacon (DRB)

 Random Beacon: periodical collective randomness sampling

* Key component for leader selection procedure in consensus protocols, e.g.
Tendermint, Ethereum 2.0, OmnilLedger, Dfinity and Algorand

* Distributed: avoiding reliance on a central trusted party
* Robustness
* Liveness
* Increased security
e Asynchronous randomness-generation (non-interactive)

* Distributed computation of an unpredictable and unbiased source of
randomness, verifiably

Formalisation of DVRFs

* Admissibility
e Consistency (correctness), robustness (guaranteed output delivery), uniqueness

* (0,t,%)-standard pseudo-randomness: no adversary controlling at most

0 < tnodes {j, ..., jg } is able to
e distinguish F,; (x™) from random for an adversarial chosen input x* on data

{(wi,m;) « Fop, (x™)}i, 1 € {1, e Jo}

* (0,t,{)-strong pseudo-randomness: no adversary controlling at most

0 < t nodes {j, ..., jg } is able to
e distinguish F., (x™) from random for an adversarial chosen input x* on data

{(vi ;) & Fop, (x)}; U{(vyr,) Fope, (X))}, L € Y, s Joh 1 € gt woos Jie}

Separation results

* Recap: (0, t, £)-standard pseudo-randomness and (0, t, £)-strong
pseudo-randomness: whether the adversary is allowed to obtain any
partial randomness evaluation on the challenge plaintext

e Separation result: strong pseudo-randomness is strictly stronger than
standard pseudo-randomness

 Real-world separation result: Algorand is (0, t, £)-standard
pseudorandom but not (0, t, £)-strong pseudorandom

Construction DDH-DVRF

 DDH-VRF (non-distributed, ESORICS’12)
» H(x) € G, where G is a DDH group
> (sk,pk = g*")
» (H (%)%, Togqr) Where Toqq; = PoK{(sk):v = H(x)** A pk = g** }

* DDH-DVRF
»(sk,pk = g°")
>(H(x)5k1, n;qdl), e, (H(x)Skn, T[qul)
= (H(x)"",m) wheren = {m; , ..., 7, }
» Non-compact proof size, strongly pseudorandom under DDH assumption

Construction (pairing-based)

* BLS-VRF [CRYPTO'02]
»e: G X Gy = Gy
»H (x) € Gy
> pk = g3"
> 0 = Hl(x)Sk
> e(0,92) = e(Hy(x), pk)

e Dfinity-DVRF (Threshold BLS)
Hl(x)Sk1) ---;Hl(x)Skn
= (SHA2(m), 7 = Hy(x)¥)

» Verification keys and public key on G,
» Pairing-friendly groups, compact
proof

» Standard pseudorandom under co-
CDH assumption

GLOW-DVRF

(Hi ()™, m2qar)s s (HL ()57, 004 41)
= (SHA2(m),m = Hy(x)*¥)

» Verification keys on G; and public key on G,
» Pairing-friendly group, compact proof
»Strongly pseudorandom under the XDH
assumption and co-CDH assumption

o Trick for security reduction: replacing

pairing equality check with NIZKs

o_2.5x faster
» Standard pseudorandom under co-CDH
assumption

Benchmarks (I)

https://github.com/fetchai/research-dvrf

Apache 2 License

Protocol Curve Library Security | Proof size Randomness Time Ratio | Assumption
Level (bytes) Generation (ms)

BN256 mcl 100 32 7.38 0.69
BLS12-381 mcl 128 48 18.67 1.75 co-CDH

GLOW-DVRF BN384 mcl 128 48 21.39 2.00 XDH
BN_P256 RELIC 100 33 33.16 3.10
Ristretto255 | Libsodium 128 1664 10.70 |

DDH-DVRE Curve25519 RELIC 128 1664 65.97 6.17 DDH
BN256 mcl 100 32 18.81 1.76

: BLS12-381 mcl 128 48 55.79 5.22

Diinity-DVRE | pN3ga mcl 128 48 60.73 5.68 co-CDH

BN_P256 RELIC 100 33 138.36 12.94

https://github.com/fetchai/research-dvrf

Comparison with existing DRBs

Synchronous distributed setup
Asynchronous distributed randomness computation

Random Beacon Standard Strong Strong Unpredictability
Protocol Pseudorandomness Pseudorandomness Bias Resistance
Algorand-DRB [33] (-) X X v
Elrond-DRB [27] (-) X X v
Harmony-DRB [36] b 4 b 4) 4 v
HERB [%] v v b 4 v
Orbs-DRB [4] v v X v
Ouroboros-Praos-DRB [2] (-) X b 4 v
Dfinity-DRB [35] v (7 v v
DDH-DRB [This work] v v v v
GLOW-DRB [This work] v v v v

Benchmarks (1)

Partially-Synchronous distributed setup
Asynchronous distributed randomness computation
Tendermint consensus nodes are simultaneously DRB nodes

W Dfinity W Dfinity w/ 15% fails GLOW B GLOW w/ 15% fails
1500

1000

500

average time (ms)

8 16 32 64 96

number of nodes n

Questions?

