Fully Distributed Verifiable Random Functions and their Application to Decentralised Random Beacons **EuroS&P 2021**

David Galindo△†, Jia Liu*, Mihai Ordean†, Jin-Mann Wong�

△Valory, Switzerland

†University of Birmingham, UK

*Fetch.ai, UK

*British Antartic Survey, UK

{ d.galindo@bham.ac.uk }

Verifiable random functions (VRF)

- First introduced by Micali, Rabin and Vadhan in 1999
- A keyed cryptographic hash function
 - $\checkmark(pk,sk) \leftarrow KG(\lambda)$
 - $\checkmark(v_x,\pi_x) \leftarrow F_{sk}(x)$
 - ✓ Verify(pk, v_x, π_x, x): publicly verifiable
 - ✓ $F_{sk}(x)$ is pseudorandom for PPT adversaries
- IETF is pursuing standardization of a verifiable random function
- Chainlink has a VRF oracle offering

Verifiable (Pseudo-)Randomness: What For?

"Convince those that did not win that the winning party was chosen fairly: pseudorandom, unbiased, unpredictably"

Applications:

- Lotteries
- Leader selection (Byzantine Agreement, Proof-of-Stake consensus)
- Electronic auctions
- Gaming

DVRFs – Synchronous Setup Phase

Global Public Output: pk, $(vk_1, ..., vk_n)$ Local Secret Output: $(sk_1, ..., sk_n)$

DVRFs – Asynchronous Randomness Generation

(sk, pk)

Distributed Random Beacon (DRB)

- Random Beacon: periodical collective randomness sampling
 - Key component for leader selection procedure in consensus protocols, e.g. Tendermint, Ethereum 2.0, OmniLedger, Dfinity and Algorand
- Distributed: avoiding reliance on a central trusted party
 - Robustness
 - Liveness
 - Increased security
 - Asynchronous randomness-generation (non-interactive)
- Distributed computation of an unpredictable and unbiased source of randomness, verifiably

Formalisation of DVRFs

- Admissibility
 - Consistency (correctness), robustness (guaranteed output delivery), uniqueness
- (θ, t, ℓ) -standard pseudo-randomness: no adversary controlling at most $\theta \le t$ nodes $\{j_1, \dots, j_{\theta}\}$ is able to
 - distinguish $F_{sk}(x^*)$ from random for an adversarial chosen input x^* on data $\{(v_i, \pi_i) \leftarrow F_{sk_i}(x^*)\}_i, i \in \{j_1, \dots, j_{\theta}\}$
- (θ, t, ℓ) -strong pseudo-randomness: no adversary controlling at most $\theta \le t$ nodes $\{j_1, \dots, j_{\theta}\}$ is able to
 - distinguish $F_{sk}(x^*)$ from random for an adversarial chosen input x^* on data $\{(v_i, \pi_i) \leftarrow F_{sk_i}(x^*)\}_i \cup \{(v_{i'}, \pi_{i'}) \leftarrow F_{sk_i}(x^*)\}_{i'}, i \in \{j_1, \dots, j_{\theta}\}, i' \in \{j_{\theta+1}, \dots, j_t\}$

Separation results

- **Recap:** (θ, t, ℓ) -standard pseudo-randomness and (θ, t, ℓ) -strong pseudo-randomness: whether the adversary is allowed to obtain any partial randomness evaluation on the challenge plaintext
- **Separation result:** strong pseudo-randomness is strictly stronger than standard pseudo-randomness
- Real-world separation result: Algorand is $(0, t, \ell)$ -standard pseudorandom but not $(0, t, \ell)$ -strong pseudorandom

Construction DDH-DVRF

- DDH-VRF (non-distributed, ESORICS'12)
 - $\triangleright H(x) \in G$, where G is a DDH group
 - $\triangleright (sk, pk = g^{sk})$
 - $\succ (H(x)^{sk}, \pi_{eqdl})$ where $\pi_{eqdl} = PoK\{(sk): v = H(x)^{sk} \land pk = g^{sk}\}$

DDH-DVRF

- $\geqslant (sk, pk = g^{sk})$ $\geqslant (H(x)^{sk_1}, \pi_{eqdl}^1), \dots, (H(x)^{sk_n}, \pi_{eqdl}^n)$ $\Rightarrow (H(x)^{sk}, \pi) \text{ where } \pi = \{\pi_{j_1}, \dots, \pi_{j_{t+1}}\}$
- > Non-compact proof size, strongly pseudorandom under DDH assumption

Construction (pairing-based)

• BLS-VRF [CRYPTO'02]

$$Pe: G_1 \times G_2 \rightarrow G_T$$

$$Ph_1(x) \in G_1$$

$$Pk = g_2^{sk}$$

$$Pk$$

Dfinity-DVRF (Threshold BLS)

$$H_1(x)^{sk_1}, \dots, H_1(x)^{sk_n}$$

 $\Rightarrow \left(SHA2(\pi), \pi = H_1(x)^{sk}\right)$

- \triangleright Verification keys and public key on G_2
- Pairing-friendly groups, compact proof
- ➤ Standard pseudorandom under co-CDH assumption

GLOW-DVRF

$$(H_1(x)^{sk_1}, \pi_{eqdl}^1), \dots, (H_1(x)^{sk_n}, \pi_{eqdl}^n)$$

$$\Rightarrow (SHA2(\pi), \pi = H_1(x)^{sk})$$

- \triangleright Verification keys on G_1 and public key on G_2
- ➤ Pairing-friendly group, compact proof
- ➤ Strongly pseudorandom under the XDH assumption and co-CDH assumption
 - Trick for security reduction: replacing pairing equality check with NIZKs
 - 2.5x faster
- Standard pseudorandom under co-CDH assumption

Benchmarks (I)

https://github.com/fetchai/research-dvrf Apache 2 License

Protocol	Curve	Library	Security	Proof size	Randomness	Time Ratio	Assumption
			Level	(bytes)	Generation (ms)		
GLOW-DVRF	BN256	mcl	100	32	7.38	0.69	
	BLS12-381	mcl	128	48	18.67	1.75	co-CDH
	BN384	mcl	128	48	21.39	2.00	XDH
	BN_P256	RELIC	100	33	33.16	3.10	
DDH-DVRF	Ristretto255	Libsodium	128	1664	10.70	1	DDH
	Curve25519	RELIC	128	1664	65.97	6.17	חטט
Dfinity-DVRF	BN256	mcl	100	32	18.81	1.76	
	BLS12-381	mcl	128	48	55.79	5.22	co-CDH
	BN384	mcl	128	48	60.73	5.68	CO-CDH
	BN_P256	RELIC	100	33	138.36	12.94	

Comparison with existing DRBs

Synchronous distributed setup

Asynchronous distributed randomness computation

Random Beacon	Standard	Strong	Strong	Unpredictability
Protocol	Pseudorandomness	Pseudorandomness	Bias Resistance	
Algorand-DRB [33]	(–)	×	X	✓
Elrond-DRB [27]	(–)	×	×	✓
Harmony-DRB [36]	×	×	×	✓
HERB [18]	✓	✓	×	✓
Orbs-DRB [4]	✓	✓	×	✓
Ouroboros-Praos-DRB [22]	(-)	×	×	✓
Dfinity-DRB [35]	✓	(?)	✓	✓
DDH-DRB [This work]	✓	✓	✓	✓
GLOW-DRB [This work]	✓	✓	✓	✓

Benchmarks (II)

Partially-Synchronous distributed setup
Asynchronous distributed randomness computation
Tendermint consensus nodes are simultaneously DRB nodes

Questions?