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Attacks on Smart Contracts
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Smart Contract Security Challenges
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Stateful exploration
Solution: read-after-write data dependency

Input generation
Solution: Input generation via symbolic execution

Environmental dependency
Solution: Model and fuzz environmental inputs



ConFuzzius



Architecture
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Encoding Individuals
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0x7d6cdd25 “hello” 42

Function Selector String Uint32

Timestamp 1533907326

Population
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Individual
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Block Number

From

Value
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9867543

0xdead…beef

100

…Data

3000000

Call Result …

Return Data Size …

External Code Size …

0x1234…5678 32

Contract Address Uint256



Data Dependency Analysis

q Access to state variables is retrieved dynamically via SLOAD and SSTORE instructions.

q Retrieve storage variable from storage location:

q Statically-sized:

q Includes: primitives, structs, and fixed arrays.

q Pop first element from stack.

q Dynamically-sized:

q Mappings: Map result of SHA3 instruction to memory contents and only extract the last 32 

bytes (concatenation).

q Dynamic Arrays: keep track of arithmetic additions of SHA3 hashes.
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Evaluation



Datasets, Baselines, and Experimental Setup

Datasets
1. Real-World dataset

q 21,147 contracts with source code from Etherscan.
q Clustered using k-means into a large cluster (3,344 contracts) and small cluster (17,803 contracts).

2. Curated dataset
q Based on SmartBugs by Durieux et al. and extended with 5 additional types from SWC registry.
q 128 contracts with 148 annotated vulnerabilities across 10 different types.

Baselines

Experimental Setup
10 runs with independent seeds with 10 min for small contracts and 1 hour for large contracts. 
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1st Research Question

RQ1: Does ConFuzzius achieve higher code coverage than current 
state-of-the art symbolic execution and fuzzing tools for smart contracts?
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Code Coverage

q ConFuzzius achieves highest code coverage:
q 91% small contracts and 81% large contracts
q Every tool struggles with large contracts
q 10% difference between small and large for ConFuzzius

vs. 31% difference for symbolic execution tools (Mythril)
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Code Coverage Over Time

q ConFuzzius outperforms state-of-the art fuzzers:
q 66% after 1 second on small contracts vs. 12% ILF 

and 15% sFuzz
q 46% after 1 second on large contracts vs. 10% ILF 

and 11% sFuzz
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2nd Research Question

RQ2: Does ConFuzzius discover more vulnerabilities than current state-of-the 
art symbolic execution and fuzzing tools for smart contracts?
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Vulnerability Detection

q ConFuzzius detected most vulnerabilities (106/148).

q All symbolic execution tools reported false positives, 
especially for integer overflows.

q ConFuzzius does not report false positives.

q ILF and sFuzz reported false positives for unsafe 
delegatecalls due to the imprecision of their 
detectors:
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3rd Research Question

RQ3: How relevant are ConFuzzius’s individual components in terms of code 
coverage and vulnerability detection?
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Component Evaluation

q We randomly selected 100 contracts from each 
cluster and disabled each component separately.

q Each component is an added value.

q Constraint solving plays an essential part in 
coverage and vulnerability detection.

q Environmental instrumentation is more relevant for 
detecting vulnerabilities.

q Data dependency analysis allows to find 10% and 
18% more vulnerabilities in small and large 
contracts, respectively. 
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Conclusion



Conclusion

q We presented ConFuzzius – the first data dependency-aware hybrid fuzzer for smart contracts
that tackles the following three challenges:

q Input generation: evolutionary fuzzing + constraint solving.

q Stateful exploration: read-after-write access patterns across state variables.

q Environmental dependencies: modelling block and contract information as fuzzable inputs.

q We compared ConFuzzius against 2 fuzzers and 3 symbolic execution tools using a curated dataset 
of 128 contracts and a dataset of 21K real-world contracts.

q ConFuzzius detects more bugs (up to 23%) and achieves higher code coverage (up to 69%).

q Our data dependency analysis can boost the detection of bugs (up to 18%).
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Questions?

All code & data is available on GitHub:

https://github.com/christoftorres/ConFuzzius

Contact information:

christof.torres@uni.lu

Supported by:

https://github.com/christoftorres/ConFuzzius

