University of Luxembourg

Interdisciplinary Centre for Security, Reliability and Trust

ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts

Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais and Radu State

Imperial College London

UNIVERSITÉ DU

Attacks on Smart Contracts

KLINT FINLEY BUSINESS 06.18.16 04:30 AM

20 JULY 2017 / #ETHEREUM #BLOCKCHAIN #SECURITY

A hacker stole \$31M of Ether — how it happened, and what it means for Ethereum

SpankChain, a cryptocurrency project focused on the adult industry, has suffered a breach that saw almost \$40,000 in ethereum (ETH) stolen.

Wallet bug freezes more than \$150 million worth of Ethereum

A hackers' dream payday: Ledf.Me and Uniswap lose \$25 million worth of cryptocurrency

by Alina Bizga on April 21, 2020

ConFuzzius

Architecture

Imperial College SIT UNIVERSITÉ DU London

Encoding Individuals

- □ Access to state variables is retrieved dynamically via SLOAD and SSTORE instructions.
- Retrieve storage variable from storage location:
 - Statically-sized:
 - □ Includes: primitives, structs, and fixed arrays.
 - Pop first element from stack.
 - Dynamically-sized:
 - Mappings: Map result of SHA3 instruction to memory contents and only extract the last 32 bytes (concatenation).
 - **Dynamic Arrays: keep track of arithmetic additions of SHA3 hashes.**

Variable Type	Declaration	Access	Storage Location
Primitive	T V	V	s(v)
Struct	struct v { T a }	v.a	s(v) + s(a)
Fixed Array	T[10] v	v[n]	$s(v) + n \cdot T $
Dynamic Array	T[] V	v[n]	$h(s(v)) + n \cdot T $
		v.length	s(v)
Mapping	mapping($T_1 \implies T_2$) v	v[k]	$h(k \parallel s(v))$

Evaluation

Datasets

- 1. Real-World dataset
 - **21,147** contracts with source code from Etherscan.
 - Clustered using k-means into a large cluster (3,344 contracts) and small cluster (17,803 contracts).
- 2. Curated dataset
 - Based on **SmartBugs** by Durieux et al. and extended with **5 additional types** from SWC registry.
 - **128 contracts** with **148 annotated vulnerabilities** across **10 different types**.

Baselines

Toolname	Туре	Description Contra	Requires ABI	Vulnerability Detectors									
		Requires Source Code		AF	ю	RE	TD	BD	UE	UD	LE	LO	US
OYENTE [28]	Symbolic	X	×	•	٠	•	٠	•	0	0	0	0	•
MYTHRIL [31]	Symbolic	×	×	•	•	•	•	•	•	•	•	0	•
M-Pro [31]	Symbolic	1	×	•	•	•	•	•	•	•	•	0	•
ILF [18]	Fuzzer	1	1	0	0	0	0	•	•	•	•	•	•
sFuzz [32]	Fuzzer	1	1	0	•	•	0	•	•	•	0	•	0
CONFUZZIUS	Hybrid	X	1	•	•	•	•	•	•	•	•	•	•

Experimental Setup

10 runs with independent seeds with 10 min for small contracts and 1 hour for large contracts.

RQ1: Does ConFuzzius achieve higher code coverage than current state-of-the art symbolic execution and fuzzing tools for smart contracts?

Code Coverage

- ConFuzzius achieves highest code coverage:
 - **91% small** contracts and **81% large** contracts
 - Every tool struggles with large contracts
 - 10% difference between small and large for ConFuzzius
 vs. 31% difference for symbolic execution tools (Mythril)

Code Coverage Over Time

- ConFuzzius outperforms state-of-the art fuzzers:
 - 66% after 1 second on small contracts vs. 12% ILF and 15% sFuzz
 - 46% after 1 second on large contracts vs. 10% ILF and 11% sFuzz

RQ2: Does ConFuzzius discover more vulnerabilities than current state-of-the art symbolic execution and fuzzing tools for smart contracts?

- □ ConFuzzius detected most vulnerabilities (106/148).
- All symbolic execution tools reported false positives, especially for integer overflows.
- ConFuzzius does not report false positives.
- ILF and sFuzz reported false positives for unsafe delegatecalls due to the imprecision of their detectors:

```
function setCallee(address newCallee)
  require(msg.sender == owner);
  callee = newCallee;
}
function forward(bytes _data) {
  require(callee.delegatecall(_data));
}
```

	Vulnerabilities										
Toolname	AF	Ю	RE	TD	BD	UE	UD	LE	LO	US	Total
OYENTE	6/6	12/4	8/0	2/0	0/0	-	-	-	-	0/0	28
MYTHRIL	7/3	18/5	10/0	0/0	3/0	24/0	0/0	4/0	-	2/0	68
M-Pro	7/3	18/5	10/0	0/0	3/0	24/0	0/0	4/0	-	2/0	68
ILF	-	-	-	-	0/0	10/0	1/2	4/0	5/0	3/0	23
sFuzz	-	12/0	7/0	-	1/0	21/0	1/2	-	0/0	-	42
ConFuzzius	10/0	18/0	10/0	2/0	7/0	46/0	1/0	4/0	5/0	3/0	106
Total Unique	14	19	11	4	7	75	1	9	5	3	148

RQ3: How relevant are ConFuzzius's individual components in terms of code coverage and vulnerability detection?

Component Evaluation

- We randomly selected 100 contracts from each cluster and disabled each component separately.
- Each component is an added value.
- Constraint solving plays an essential part in coverage and vulnerability detection.
- Environmental instrumentation is more relevant for detecting vulnerabilities.
- Data dependency analysis allows to find 10% and 18% more vulnerabilities in small and large contracts, respectively.

Conclusion

- We presented ConFuzzius the first data dependency-aware hybrid fuzzer for smart contracts that tackles the following three challenges:
 - □ **Input generation**: evolutionary fuzzing + constraint solving.
 - **Stateful exploration**: read-after-write access patterns across state variables.
 - **Environmental dependencies**: modelling block and contract information as fuzzable inputs.
- We compared ConFuzzius against 2 fuzzers and 3 symbolic execution tools using a curated dataset of 128 contracts and a dataset of 21K real-world contracts.
- □ ConFuzzius detects more bugs (up to 23%) and achieves higher code coverage (up to 69%).
- Our data dependency analysis can **boost the detection of bugs** (up to **18%**).

All code & data is available on GitHub:

https://github.com/christoftorres/ConFuzzius

Contact information:

christof.torres@uni.lu

Supported by:

Horizon 2020 European Union Funding for Research & Innovation