
University of Luxembourg
Interdisciplinary Centre for Security, 

Reliability and Trust

ConFuzzius: A Data Dependency-Aware Hybrid
Fuzzer for Smart Contracts

Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais and Radu State



Attacks on Smart Contracts

2



Smart Contract Security Challenges

3

Stateful exploration
Solution: read-after-write data dependency

Input generation
Solution: Input generation via symbolic execution

Environmental dependency
Solution: Model and fuzz environmental inputs



ConFuzzius



Architecture

5

Initial Population

Instrumented EVM

Constraint Solving

Termination Analysis

Data Dependency Analysis

Code Coverage Evaluation

Vulnerability Detection

Symbolic Taint Analysis

Evolutionary Fuzzing Engine Execution Trace Analyzer

Mutation Pools

Data Dependencies

Execution TraceIndividual

Read Value

Remove Value

Report

Smart 
Contract

Blockchain State
(Optional)

Code Coverage

ConFuzzius

Add Value

Selection

Crossover

Mutation



Encoding Individuals

6

0x7d6cdd25 “hello” 42

Function Selector String Uint32

Timestamp 1533907326

Population

Input

Individual

Environment

Transaction

Block Number

From

Value

Gas Limit

9867543

0xdead…beef

100

…Data

3000000

Call Result …

Return Data Size …

External Code Size …

0x1234…5678 32

Contract Address Uint256



Data Dependency Analysis

q Access to state variables is retrieved dynamically via SLOAD and SSTORE instructions.

q Retrieve storage variable from storage location:

q Statically-sized:

q Includes: primitives, structs, and fixed arrays.

q Pop first element from stack.

q Dynamically-sized:

q Mappings: Map result of SHA3 instruction to memory contents and only extract the last 32 

bytes (concatenation).

q Dynamic Arrays: keep track of arithmetic additions of SHA3 hashes.

7



Evaluation



Datasets, Baselines, and Experimental Setup

Datasets
1. Real-World dataset

q 21,147 contracts with source code from Etherscan.
q Clustered using k-means into a large cluster (3,344 contracts) and small cluster (17,803 contracts).

2. Curated dataset
q Based on SmartBugs by Durieux et al. and extended with 5 additional types from SWC registry.
q 128 contracts with 148 annotated vulnerabilities across 10 different types.

Baselines

Experimental Setup
10 runs with independent seeds with 10 min for small contracts and 1 hour for large contracts. 

9



1st Research Question

RQ1: Does ConFuzzius achieve higher code coverage than current 
state-of-the art symbolic execution and fuzzing tools for smart contracts?

10



Code Coverage

q ConFuzzius achieves highest code coverage:
q 91% small contracts and 81% large contracts
q Every tool struggles with large contracts
q 10% difference between small and large for ConFuzzius

vs. 31% difference for symbolic execution tools (Mythril)

11

Small Contracts Large Contracts
0%

25%

50%

75%

100%

In
st

ru
ct

io
n

C
ov

er
ag

e 91%
81%86%

62%67%
53%

71%

40%

72%

40%

22%
15%

ConFuzzius

ILF

Oyente

Mythril

M-Pro

sFuzz



0 100 200 300 400 500 600
0%

25%

50%

75%

100%
Small Contracts

ConFuzzius ILF sFuzz

0 500 1000 1500 2000 2500 3000 3500

Time in Seconds

0%

25%

50%

75%

100%
Large Contracts

In
st

ru
ct

io
n

C
ov

er
ag

e

Code Coverage Over Time

q ConFuzzius outperforms state-of-the art fuzzers:
q 66% after 1 second on small contracts vs. 12% ILF 

and 15% sFuzz
q 46% after 1 second on large contracts vs. 10% ILF 

and 11% sFuzz

12



2nd Research Question

RQ2: Does ConFuzzius discover more vulnerabilities than current state-of-the 
art symbolic execution and fuzzing tools for smart contracts?

13



Vulnerability Detection

q ConFuzzius detected most vulnerabilities (106/148).

q All symbolic execution tools reported false positives, 
especially for integer overflows.

q ConFuzzius does not report false positives.

q ILF and sFuzz reported false positives for unsafe 
delegatecalls due to the imprecision of their 
detectors:

14



3rd Research Question

RQ3: How relevant are ConFuzzius’s individual components in terms of code 
coverage and vulnerability detection?

15



Component Evaluation

q We randomly selected 100 contracts from each 
cluster and disabled each component separately.

q Each component is an added value.

q Constraint solving plays an essential part in 
coverage and vulnerability detection.

q Environmental instrumentation is more relevant for 
detecting vulnerabilities.

q Data dependency analysis allows to find 10% and 
18% more vulnerabilities in small and large 
contracts, respectively. 

16

Small Contracts Large Contracts Small Contracts Large Contracts
70%

80%

90%

100%

92%

84%

80%

73%

98%
95%

90%

82%

94%

91%

83%

80%

Without Constraint Solving

Without Read-After-Write Dependency

Without Environmental Instrumentation

Instruction Coverage Vulnerabilities Detected



Conclusion



Conclusion

q We presented ConFuzzius – the first data dependency-aware hybrid fuzzer for smart contracts
that tackles the following three challenges:

q Input generation: evolutionary fuzzing + constraint solving.

q Stateful exploration: read-after-write access patterns across state variables.

q Environmental dependencies: modelling block and contract information as fuzzable inputs.

q We compared ConFuzzius against 2 fuzzers and 3 symbolic execution tools using a curated dataset 
of 128 contracts and a dataset of 21K real-world contracts.

q ConFuzzius detects more bugs (up to 23%) and achieves higher code coverage (up to 69%).

q Our data dependency analysis can boost the detection of bugs (up to 18%).

18



Questions?

All code & data is available on GitHub:

https://github.com/christoftorres/ConFuzzius

Contact information:

christof.torres@uni.lu

Supported by:

https://github.com/christoftorres/ConFuzzius

