

On the (In)Feasibility of Attribute Inference Attacks on Machine Learning Models

Benjamin Zi Hao Zhao, Aviral Agrawal, Catisha Coburn, Hassan Jameel Asghar, Raghav Bhaskar, Mohamed Ali Kaafar, Darren Webb, Peter Dickinson

IEEE EuroS&P – 8 September 2021

Attacks on Machine Learning

- Adversarial Examples
- Poisoning Attacks
- Backdoor Attacks
- Model Extraction
- Membership Inference
- Attribute Inference

• Infer if any given record is from the training data.

Membership Inference Works

Membership Inference Attacks Against Machine Learning Models

Reza Shokri	Marco Stronati*	Congzheng Song	Vitaly Shmatikov	
Cornell Tech	INRIA	Cornell	Cornell Tech	
hokri@cornell.edu	marco@stronati.org	cs2296@cornell.edu	shmat@cs.cornell.edu	

Dataset	Training	Testing	Attack	
	Accuracy	Accuracy	Precision	
Adult	0.848	0.842	0.503	
MNIST	0.984	0.928	0.517	
Location	1.000	0.673	0.678	
Purchase (2)	0.999	0.984	0.505	
Purchase (10)	0.999	0.866	0.550	
Purchase (20)	1.000	0.781	0.590	
Purchase (50)	1.000	0.693	0.860	
Purchase (100)	0.999	0.659	0.935	
TX hospital stays	0.668	0.517	0.657	

Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning

Milad Nasr	Reza Shokri	Amir Houmansadr
University of Massachusetts Amherst	National University of Singapore	University of Massachusetts Amherst
milad@cs.umass.edu	reza@comp.nus.edu.sg	amir@cs.umass.edu

LOGAN: Membership Inference Attacks Against Generative Models*

Jamie Hayes[†], Luca Melis[†], George Danezis, and Emiliano De Cristofaro

University College London {j.hayes, l.melis, g.danezis, e.decristofaro}@cs.ucl.ac.uk

Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting

Samuel Yeom* Irene Giacomelli[†] Matt Fredrikson* Somesh Jha[†] *Carnegie Mellon University, [†]University of Wisconsin–Madison

	Our work	Shokri et al. [7]		
Attack	Makes only one query to	Must train hundreds of		
complexity	the model	shadow models		
Required knowledge	Average training loss L_S	Ability to train shadow models, e.g., input distribu- tion and type of model		
Precision	0.505 (MNIST) 0.694 (CIFAR-10) 0.874 (CIFAR-100)	0.517 (MNIST) 0.72-0.74 (CIFAR-10) > 0.99 (CIFAR-100)		
Recall	> 0.99	> 0.99		

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models

Ahmed Salem^{*}, Yang Zhang^{*}, Mathias Humbert[†], Pascal Berrang^{*}, Mario Fritz^{*}, Michael Backes^{*} *CISPA Helmholtz Center for Information Security, {ahmed.salem, yang.zhang, pascal.berrang, fritz, backes}@cispa.saarland [†]Swiss Data Science Center, ETH Zurich and EPFL, mathias.humbert@epfl.ch

White-box vs Black-box: Bayes Optimal Strategies for Membership Inference

Alexandre Sablayrolles¹² Matthijs Douze² Yann Ollivier² Cordelia Schmid¹ Hervé Jégou²

Attribute Inference

- Infer information on missing attribute(s) with access to the ML Model.
- Is there any *advantage* to inferring attributes when in or out of the training data. (Learning from the Distribution versus Learning from inclusion)

Evaluating Attribute Inference

Infer 15 (Most Important) Missing Features

AI	Loc-30	Pur-2	Pur-10	Pur-20	Pur-50	Pur-100
Conf	7.78 <mark>E-4</mark>	1.38 <mark>E-5</mark>	-3.69 <mark>E-4</mark>	2.16 <mark>E-4</mark>	2.00E-3	1.65 <mark>E-3</mark>
Loss	7.76 <mark>E-4</mark>	-9.79 <mark>E-5</mark>	5.57 <mark>E-3</mark>	6.69 <mark>E-3</mark>	4.59 <mark>E-3</mark>	5.09 <mark>E-3</mark>
Shadow	8.00 <mark>E-4</mark>	-2.00 <mark>E-4</mark>	2.17 <mark>E-3</mark>	2.63 <mark>E-3</mark>	4.10 <mark>E-3</mark>	4.20 <mark>E-3</mark>

The models above are vulnerable to *Membership* Inference, however there is negligible advantage when performing *Attribute* Inference

Attacks Threat Model

Model Parameters, Updates, Everything Else

- 3 Black Box attacks
 - Shadow MI (Shokri et al.)
 - Loss MI (Yeom et al.)
 - Confidence MI (Salem et al.)

- 2 White Box attacks
 - Local MI (Nasr et al.)
 - Global MI (Nasr et al.)

Evaluating Existing Membership Inference

CIFAR Dataset in the paper

Evaluating Existing Membership Inference

Strong Membership Inference

- Infer if member vectors/neighbor vectors are in the training dataset
- Is there any *advantage* to inferring membership when in (member vectors) or out (neighbour vectors) of the training data.

SMI Theoretical results

- A successful **Membership Inference** attack does not imply a successful **Strong Membership Inference** attack
 - (Theorem 1 in paper)
- Strong Membership Inference assuming r-neighbour distinguishability holds
 - (Theorem 2 in paper)

Evaluating Strong Membership Inference

Loss MI

We perturb member vectors to deliberately produce off-distribution non-members.

MI AUC increases as distance increases

More classes in a dataset is more vulnerable to MI

Evaluating Strong Membership Inference

- Dominant Class

Approximate Attribute Inference

- Infer approximate information on missing attribute(s) with access to the ML Model.
- Is there any *advantage* to inferring attributes when in or out of the training data. (Learning from the Distribution versus Learning from inclusion)

Evaluating Approximate Attribute Inference

AI	Loc-30	Pur-2	Pur-10	Pur-20	Pur-50	Pur-100
Conf	7.78 <mark>E-4</mark>	1.38 <mark>E-5</mark>	-3.69 <mark>E-4</mark>	2.16 <mark>E-4</mark>	2.00E-3	1.65 <mark>E-3</mark>
Loss	7.76 <mark>E-4</mark>	-9.79 <mark>E-5</mark>	5.57 <mark>E-3</mark>	6.69 <mark>E-3</mark>	4.59 <mark>E-3</mark>	5.09E-3
Shadow	8.00 <mark>E-4</mark>	-2.00 <mark>E-4</mark>	2.17 <mark>E-3</mark>	2.63 <mark>E-3</mark>	4.10E-3	4.20 <mark>E-3</mark>

-	AAI	Loc-30	Pur-2	Pur-10	Pur-20	Pur-50	Pur-100	
-	Conf	0.1609	0.0366	0.0516	0.0502	0.0958	0.1307	Infer missing as \mathbf{x}' where
	Loss	0.1030	0.0125	0.0516	0.0541	0.0789	0.1012	$ x-x' < \alpha$
	Shadow	0.0554	0.0054	0.0067	0.0149	0.0766	0.0964	

It is possible to successfully infer approximate attributes significantly better than random guess when the target model is susceptible to membership inference. We set α as 7.5, the distance of a random guess

Key Takeaways

- 1. It is difficult to infer exact attributes (AI), even if it is susceptible to MI.
- 2. Existing MI works consider datasets with vectors at large distances from each other.
- 3. The performance is close to a random guess (AUC = 0.5), for close nonmembers, problematic as SMI is needed for AI.
- 4. Dominating classes are less susceptible to MI and SMI attacks.
- 5. Observations of MI and SMI susceptibility is consistent across different ML architectures.
- 6. It is possible to approximately infer attributes (AAI), when susceptible to MI.
- 7. The more overfitted a target classification model, the more susceptible it is to AAI. AI remains difficult even with increased overfitting levels.

Questions?

On the (In)Feasibility of Attribute Inference Attacks on Machine Learning Models

Benjamin Zi Hao Zhao^{‡†}, Aviral Agrawal^{§*†}, Catisha Coburn[¶], Hassan Jameel Asghar^{*†}, Raghav Bhaskar[†], Mohamed Ali Kaafar^{*†}, Darren Webb[¶], and Peter Dickinson[¶] *Macquarie University, [‡]University of New South Wales, [†]Data61-CSIRO, [§]BITS Pilani K.K.Birla Goa campus, [¶]Cyber & Electronic Warfare Division, Defence Science and Technology Group, Australia

Abstract—With an increase in low-cost machine learning APIs, advanced machine learning models may be trained on private datasets and monetized by providing them as a service. However, privacy researchers have demonstrated that these models may leak information about records in the training dataset via membership inference attacks. In this paper, we take a closer look at another inference attack pact the attacks' likelihood and accuracy [27], [25], [34], [21], [31]. Our focus is on a related, and perhaps a more likely attack in practice, where the adversary with partial background knowledge of a target's record seeks to complete its knowledge of the missing attributes by observing the model's responses. This attack is called *model inversion* [5], [6], or in general *attribute inference* (AL) [34]. Yeom et al. [34] provide a formal definition of

Read more insights and details about our results.

https://arxiv.org/abs/2103.07101