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Attacks on Machine Learning

e Adversarial Examples
Unexpected Behaviours P
e Poisoning Attacks

e Backdoor Attacks

\ e Model Extraction

Information Leakage

e Membership Inference

e Attribute Inference



Membership Inference

Population Data Training Data ML Model

Member or Non-Member
Record

* Infer if any given record is from the training data.



Membership Inference Works

ML-Leaks: Model and Data Independent
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Machine Leaming Models Machine Learning Models
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Attribute Inference

Member or Non-Member
Population Data Record

2 "\..__\‘\ '/
/ o4

Infer missing as x’ where
Ix —x'| =0

Training Data

e Infer information on missing attribute(s) with access to the ML Model.

* |s there any advantage to inferring attributes when in or out of the training
data. (Learning from the Distribution versus Learning from inclusion)



Evaluating Attribute Inference

Infer 15 (Most Important) Missing Features

Al Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100

Conf | 7.78E-4 1.38E-5 -3.69E-4 2.16E-4 2.00E-3 1.63E-3
Loss | 7.76E-4 -9.79E-5 5.57TE-3 6.69E-3 4.59E-3 5.09E-3
Shadow | B.00E-4 -2.00E-4 2.17TE-3  263E-3 4.10E-3 4.20E-3

The models above are vulnerable to Membership Inference,
however there is negligible advantage when performing
Attribute Inference



Attacks Threat Model

ML Model ML Model

@

Model Parameters, Updates, Everything Else

e 3 Black Box attacks

e Shadow MI (Shokri et al.) e 2 White Box attacks

* Loss MI (Yeom et al.) e Local Ml (Nasr et al.)
e Confidence MI (salem et al.) e Global MI (Nasr et al.)



Evaluating Existing Membership Inference

Conf Ml
1.0 CIFAR Dataset

in the paper
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Evaluating Existing Membership Inference
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Strong Membership Inference

Neighbor Record

B /“‘\

Neighbor:
Ix —x'| < a

Population Data \ Member Record / Training Data ML Model
00

x1

 Infer if member vectors/neighbor vectors are in the training dataset

* |s there any advantage to inferring membership when in (member
vectors) or out (neighbour vectors) of the training data.
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SMI Theoretical results

* A successful Membership Inference attack does not imply a

successful Strong Membership Inference attack
= (Theorem 1 in paper)

e Strong Membership Inference < Attribute Inference,
assuming r-neighbour distinguishability holds
= (Theorem 2 in paper)



Evaluating Strong Membership Inference

Loss Ml

1.0
We perturb member 0.

vectors to deliberately 0.8 1
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- O
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MI AUC increases as distance increases

More classes in a dataset is more vulnerable to Ml
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Evaluating Strong Membership Inference

Loss Ml
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If SMI is not possible,
then Al is not possible

Odd behaviour whereby the AUC
decreases at extreme distances

- Dominant Class
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Approximate Attribute Inference

Member or Non-Member
Population Data Record

Infer missing as x’ where ML Model
Ix —x'| <«

Training Data

* Infer approximate information on missing attribute(s) with access to the ML Model.
 |s there any advantage to inferring attributes when in or out of the training data.

(Learning from the Distribution versus Learning from inclusion)
14



Evaluating Approximate
Attribute Inference

Al Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100
Conf | 7.78E-4 1.38E-5 -3.69E-4 2.16E-4 2.00E-3 1.65E-3
Loss | 7.76E-4  -9.79E-5 5.57TE-3 6.69E-3 4.59E-3 5.09E-3
Shadow | 8.00E-4 -2.00E-4 217E-3  263E-3 4.10E-3 4.20E-3
AAI | Loc-30 Pur-2 Pur-10  Pur-20  Pur-50  Pur-100
Conf | 0.1609 0.0366 0.0516 0.0502 0.0958 0.1307 Infer missing as x’ where
Loss 0.1030 0.0125 0.0516  0.0541 0.0789 0.1012 x —x'| < a
Shadow 0.0554  0.0054  0.0067 0.0149 0.0766 0.0964

We set a as 7.5, the distance

It is possible to successfully infer approximate attributes of a random guess

significantly better than random guess when the target
model is susceptible to membership inference.
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Key Takeaways

1. Itis difficult to infer exact attributes (Al), even if it is susceptible to MI.

2. Existing MI works consider datasets with vectors at large distances from
each other.

3. The performance is close to a random guess (AUC = 0.5), for close non-
members, problematic as SMI is needed for Al.

4. Dominating classes are less susceptible to M|l and SMI attacks.

5. Observations of Ml and SMI susceptibility is consistent across different ML
architectures.

6. Itis possible to approximately infer attributes (AAl), when susceptible to MI.

7. The more overfitted a target classification model, the more susceptible it is
to AAI. Al remains difficult even with increased overfitting levels.
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Questions?

Read more insights and

o ere , , ) details about our results.
On the (In)Feasibility of Attribute Inference Attacks on Machine Learning

Models
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Abstract—With an increase in low-cost machine learning pact the attacks’ likelihood and accuracy [27], [25], [34],
APIs, advanced machine learning models may be trained [21], [31]. Our focus is on a related, and perhaps a
on private datasets and monetized by providing them as more likely attack in practice, where the adversary with
a service. However, privacy researchers have demonstrated  partial background knowledge of a target’s record seeks
that these models may leak information about records in to complete its knowledge of the missing attributes by
the training dataset via membership inference attacks. In observing the model’s responses. This attack is called

this paper, we take a closer look at another inference attack  model inversion [5], [6], or in general attribute inference httpS ://a rxiv.o rg/a bS/Z 103.07101

o3t W4 B TR R S S TR T (ATY 1341 Yeam et al 1341 nrawide a formal definition of

benjamin.zhao@unsw.edu.au 17
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