Secure Messaging Authentication against Active Man-in-the-Middle Attacks

Signal as Asynchronous Protocol

Asynchronous messaging protocol:

Safety numbers!

Codes (QR & Numeric) contain long-term public keys and party identifiers:

 $egin{aligned} \mathbf{local_fprint} &= H_i(0\|\mathbf{fvers}\|idpk_A\|\mathbf{id}_A,idpk_A) \end{aligned}$ $\mathbf{remote_fprint} &= H_i(0\|\mathbf{fvers}\|idpk_B\|\mathbf{id}_B,idpk_B) \end{aligned}$ $safety\ number = \mathbf{local_fprint}\|\mathbf{remote_fprint}$

Claim: this will "verify the security of [the users] encryption." (Signal App)

We identify weaknesses within this safety number authentication construct.

Issue 1: No Session Authentication

 Safety number is computed from purely public (and static) information.

```
egin{aligned} \mathbf{local\_fprint} &= \\ H_i(0 \| \mathbf{fvers} \| idpk_A \| \mathbf{id}_A, idpk_A) \\ \mathbf{remote\_fprint} &= \\ H_i(0 \| \mathbf{fvers} \| idpk_B \| \mathbf{id}_B, idpk_B) \end{aligned}
```

- If an attacker has learned the long-term secret key of the communicating partner, then creating a *PreKeyBundle* is trivial
- Impersonating attacks possible, verifying the Safety Number does not detect this attack

Issue 2: Attacks possible with Display control

- Safety number is computed from purely
 public (and static) information.
 local_fprint =
 H_i(0||fvers||idpk_A||id_A, idpk_A)
 remote_fprint =
 H_i(0||fvers||idpk_B||id_B, idpk_B)
- If an attacker can control user display via an overlay (access to secret state not necessary), then a forged safety number is displayed to the verifying party.

```
Responder
Initiator
                           Attacker
User Authentication Phase
lf = H_i(0||f_{vers}||idpk_A||id_A, idpk_A)
\mathbf{rf} = H_i(0||\mathbf{f}_{were}||idpk'_{p}||idp,idpk'_{p})
                             1f = H_i(0||f_{vers}||idpk_A||id_A, idpk_A)
                             rf = H_i(0||f_{vare}||idpk_B||id_B, idpk_B)
Alice display = Trunc(1f)||Trunc(rf)|
                                            RevealUser
                                      Trunc(1f) ||Trunc(rf)
                           Bob display = Trunc(1f)||Trunc(rf)||
  If Alice display Page 18 Bob display, authentication successful.
```

Contributions

1. Security model to capture user-mediated authentication protocols (META)

2. Efficient and clean adaptation of Signal to achieve session authentication and per-epoch authentication: Modified Device-to-User Signal Authentication (MoDUSA)

META: Mediated Epoch Three-party Authentication Security Framework

High-level security goal: When a session at a Device "accepts", then there exists another honest and matching session (subset transcription matching).

META: Mediated Epoch Three-party Authentication Threat Model

Attacker is capable of leaking long-term and device state.

META: Mediated Epoch Three-party Authentication Threat Model

Attacker is able to compromise *directions* on the User-to-Device channel independently, sending messages between the User and the Devices.

Compromise Settings

Compromised User:

- The attacker cannot leak current epoch secrets
- The attacker cannot RevealUser on both devices, allowing the attacker to inject messages from the Devices to the User.
- The attacker cannot CorruptUser, allowing the attacker to inject messages from the User to the Devices.

Compromised Device:

- The attacker can leak any secrets from the devices; and
- The attacker cannot RevealUser on either device, preventing the attacker from injecting any messages from the Devices to the User.
- The attacker cannot CorruptUser, allowing the attacker to inject messages from the User to the Devices.

Active Post-Compromise Security

Signal Authentication Insecure in Both Settings

Insecure Under Compromised User:

Tactic: Use RevealUser

Attack succeeds since Signal Safety Numbers are over purely public information.

Insecure under Compromised Device:

Tactic: Leaking session state, inject messages

Since Signal Safety Numbers doesn't authenticate per-session information, this attack is successful.

MoDUSA: Modified Device-to-User Signal Authentication

Modify the Signal Key Schedule to add an additional authentication key.

Hashed Transcripts

Pair of hashed transcripts of all public-key values sent between the two parties. Pair maintained in case (due to asynchronicity) one party has not received the most recent ratchet public key.

New Safety Numbers

Safety numbers now update per epoch. Verification of safety number implies agreement on transcript of all cryptographic information.

$$FP^{i-1} = \mathsf{MAC} \; (\ ak^{i-1} \ , \ H^{i-1} \ \| \ \mathsf{role} \)$$

$$FP^{i}$$
 = MAC (ak^{i} , H^{i} || role)

Role separation prevents reflection attacks.

Maintain pair of safety numbers to account for potential asynchronicity.

Results of Analysing MoDUSA in META

MoDUSA:

Auth. Initiator I	Auth. Responder I'	CD Without E.	CD with E.	CU Without E.	CU With E.
Display match	Display match	✓	✓	√	X
Display match	Scan match	✓	✓	X	X
Scan match	Display match	✓	✓	✓	X
Scan match	Scan match	✓	√	✓	X
Display non-match	Scan non-match	✓	√	X	X
Scan non-match	Display non-match	✓	✓	✓	✓
Scan non-match	Scan non-match	✓	✓	✓	✓

- CD:Compromised Device.
- CU: Compromised User.
- **E**: Eavesdropper.

Summary

