
Nontransitive Policies Transpiled

Mohammad M. Ahmadpanah 
Aslan Askarov

Andrei Sabelfeld

Euro SP 2021

/ Chalmers University of Technology / mohammad.ahmadpanah@chalmers.se 
/ Aarhus University / aslan@cs.au.dk

/ Chalmers University of Technology / andrei@chalmers.se

Information Flow

2

Public Secret

Security classes

→

Flow relation

Flow Relation

3

Public Secret Top Secret→ →

“Since implies permission to move a value from […]
class to […] class , and implies it is in turn permissible
to move to […] class , an inconsistency arises if ”

A → B x
A B B → C

x C A ↛ C

The argument for transitivity of the flow relation

[D. Denning, A lattice model for secure information flow, 1976]

Yet, transitivity of the flow relation is not always desirable, especially in
coarse-grained settings!

The argument assumes that when is moved its original classification is lostx

A case for nontransitivity
[Lu & Zhang, CSF 2020]

4

• Consider a system w/ three components: Alice, Bob, Charlie

• Alice permits Bob to read her data, but not Charlie

• Bob permits his data to be read by Charlie

• We have , , but

• If Bob’s component sends anything to Charlie, it must be

only Bob’s information, and not Alice’s

A → B B → C A ↛ C
OK

A case for nontransitivity
[Lu & Zhang, CSF 2020]

5

• Consider a system w/ three components: Alice, Bob, Charlie

• Alice permits Bob to read her data, but not Charlie

• Bob permits his data to be read by Charlie

• We have , , but

• If Bob’s component sends anything to Charlie, it must be

only Bob’s information, and not Alice’s

A → B B → C A ↛ C
OK

OK

A case for nontransitivity
[Lu & Zhang, CSF 2020]

6

• Consider a system w/ three components: Alice, Bob, Charlie

• Alice permits Bob to read her data, but not Charlie

• Bob permits his data to be read by Charlie

• We have , , but

• If Bob’s component sends anything to Charlie, it must be

only Bob’s information, and not Alice’s

A → B B → C A ↛ C
OK

BAD

• Lu & Zhang’s approach

• nontransitive flow relation

• new definition of nontransitive noninterference (NTNI)  

that generalizes standard NI

• specialized type system for enforcement

• new proof of soundness

→

This paper

7

Standard (transitive) information flow machinery can enforce
nontransitive noninterference

Two steps

Program transformation Lattice encoding

The answer to “dropping the lattice assumption” is … power lattices :-)

• Based on the insight from complex label models such as DLM [Myers & Liskov, 1998] and DC [Stefan et al., 2011]

From Nontransitive to Transitive

8

Observation: parts of the component state such as Bob.data1 are
used as both sources (inputs to the system) and sinks (outputs)

Step 1: rewrite the program so that sink and source usage is separated

- source vars (inputs) are never modified (read-only)

- sink vars (outputs) are never read (write-only)

- all other updates are done in temp variables

Bob.data1 is substituted by 3 vars:

- Bob.data1 (* contains initial value of Bob.data1 *)
- Bob.data1_sink (* contains final value of Bob.data1 *)
- Bob.data1_temp (* for intermediate values of Bob.data1 *)

The rewritten program is semantically
equivalent to the original (modulo renaming and
having 3x more variables in the state)

Add initialization/finalization that copy to/from the temp vars

Example of the Rewriting

Before After (with inlining of main for reader’s convenience)

9

From Nontransitive to Transitive

10

Observation: nontransitive is really about permitting flows from ’s source to ’s sinkA → B A B

Step 2: given nontransitive relation on components, represent each component by two levels in
a powerset-lattice: one level for source and one for sinks

→

, A → B B → CNontransitive policy:

Asource

Bsource

Csource

Asink

Bsink

Csink

?

{A,B,C}

{}

{A,B} {A,C} {B,C}

{A} {B} {C}

Standard (transitive) power-lattice

Security class that can read source data of B and C

Lattice element corresponds to a
security class that can read source data of
components

{x1, …, xn}

x1, …, xn

From Nontransitive to Transitive

11

Observation: nontransitive is really about permitting flows from ’s source to ’s sinkA → B A B

Step 2: given nontransitive relation on components, represent each component by two levels in
a powerset-lattice: one level for source and one for sinks

→

, A → B B → CNontransitive policy:

{A,B,C}

{}

{A,B} {A,C} {B,C}

{A} {B} {C}

Asource

Bsource

Csource

Asink

Bsink

Csink

?

Standard (transitive) power-lattice

Lattice element corresponds to
security class that can read source data of
components

{x1, …, xn}

x1, …, xn

Security class that can read source data of B and C

From Nontransitive to Transitive

12

Observation: nontransitive is really about permitting flows from ’s source to ’s sinkA → B A B

Step 2: given nontransitive relation on components, represent each component by two levels in
a powerset-lattice: one level for source and one for sinks

→

, A → B B → CNontransitive policy:

{A,B,C}

{}

{A,B} {A,C} {B,C}

{A} {B} {C}
Asource Bsource Csource

Asink

Bsink

Csink

Standard (transitive) power-lattice

Lattice element corresponds to
security class that can read source data of
components

{x1, …, xn}

x1, …, xn

Security class that can read source data of B and C

Theorem

Given a program and a nontransitive flow relation , there is a program
that is semantically equivalent to (modulo temp-var rewriting) and a
transitive flow relation such that  
  
 NTNI () TNI ()

c → c′

c
→′

c, → ⇔ c′ , →′

13

What’s the Theorem good for?
No need to use special type systems for NTNI – just use what’s out there!

14

Flow-sensitive type system of [Hunt &
Sands, POPL’06] is strictly more
permissive than the specialized type
system of [Lu & Zhang, CSF’20]

Case studies using JOANA
information flow analyzer [Hammer,
Snelting, 2020]

For the formal calculus For Java

Lattice model input to JOANA for the running example

Alternatives to power-lattice

Source-sink lattice via Dedekind-MacNeille
completion algorithm

⊥

Asource Bsource Csource

Asink Bsink Csink

T

(a)
⊥

Asource,Asink Bsource

Bsink Csource,Csink

T

(b)

Figure 22: (a) A source-sink lattice encoding for the
running example; (b) A minimal lattice.

source levels and the glb of the sinks. It also makes one
top and one bottom element for the lattice.

Figure 22a illustrates the resulting source-sink lattice
for the running example (A�B and B�C). In the worst
case, the size of the lattice is O(LN 2) and the time
complexity of the algorithm is O(LN 4), as proved in Ap-
pendix A. Furthermore, optimization techniques can make
the partial order compact, before constructing the lattice
out of it; for example, any pairs of lsrc and lsnk coincide
in the partial order when one of them is only in relation
with the other one, not any other levels. Figure 22b depicts
the minimal source-sink lattice for the nontransitive policy
in question; observe how Asink and Csource are collapsed.

We demonstrate the NTNI-to-TNI tranpilation defined
for a source-sink lattice, in comparison with the power-
lattice encoding, by replacing {l} with lsrc and C(l) with
lsnk in the labeling function and program transformation.
In Appendix A, we formally introduce the transpilation
using a source-sink lattice. We make use of the program
canonicalization for batch-job programs and define the
transitive encoding of a nontransitive policy based on a
given source-sink lattice (Definition 15). We prove that
any nontransitive policy on a program can be reduced
to a corresponding transitive policy on a semantically
equal program (Theorem 9). For the enforcement mech-
anism, we prove that the presented flow-sensitive type
system, while a source-sink lattice is in place, is sound
and more permissive than the nontransitive type system
(Theorems 10 and 11). Moreover, our results can be gen-
eralized to programs with intermediate inputs and outputs,
where the program transformation algorithm replaces the
level of input and output commands to lsrc and lsnk,
respectively (Algorithm 3 and Theorem 12). We also prove
that the flow-sensitive type system for programs with I/O
is compatible with a source-sink lattice (Theorem 13).

7. Related work

Our starting point is the special-purpose notions
Nontransitive Noninterference (NTNI) and Nontransitive
Types (NTT) by Lu and Zhang [17]. Our work demon-
strates how to cast NTNI as classical noninterference on
a lattice and how to improve the precision of NTT by
classical flow-sensitive analysis.

Nontransitive noninterference is not to be confused
by intransitive noninterference. Intransitive noninterfer-
ence was introduced by Rushby [25] and explored by,
amongst others, Roscoe and Goldsmith [23], Mantel and
Sands [18], and Ron van der Meyden [30]. Intransitive

noninterference is intended to address the where dimen-
sion of declassification [27]. The typical scenario for
intransitive noninterference is ensuring that sensitive data
is passed through a trusted encryption module before it
is released. For example, security labels might be low,
encrypt, and high, ordered by high ô encrypt ô low
while high ¢ low. Like nontransitive policies, intransitive
policies do not assume transitive policies. However, there
is a fundamental di�erence between nontransitive and
intransitive policies: intransitive noninterference allows
low information to be (indirectly) dependent on high. In
the encryption module scenario, this means that changes
in the (high) plaintext may reflect in the changes in the
(low) ciphertext. In contrast, nontransitive policy A�B
and B�C guarantees that there are no information de-
pendencies from A to C whatsoever.

Further approaches to declassification introduce de-
centralized hierarchies and dynamic policies. Myers and
Liskov’s DLM [19] is based on transitive policies that
encode ownership in the labels. The goal is to allow
declassification only if it is allowed by the owner(s)
of the data. DC labels [28] by Stefan et al. models a
setting of mutual distrust without relying on a central-
ized principal hierarchy. DC labels incorporate formulas
over principals, modeling can-flow-to relation by logical
implication. FLAM [2] by Arden et al. explores robust
authorization to mitigate delegation loopholes in policies
like DLM. Jia and Zdancewic [15] encode security types
using authorization logic in a programming language for
access control. Their encoding does not assume transitivity
and it needs to be encoded as explicit delegations. Swamy
et al. [29] and Broberg et al. [6] explore the e�ects
of dynamic policy updates on the transitivity of flows.
Broberg et al. call a flow time-transitive if information
leaks from A to C via B even if no flows from A to C
are allowed at any given time. This can happen when
the policy of allowing flows from A to B is dynamically
updated to allow flows from B to C. Time-transitivity is
not in the scope of our work because our policies are
static.

Rajani and Garg [22] explore the granularity of poli-
cies for information flow control. They show that fine-
grained type systems that track the propagation of values
are as expressive as coarse-grained type systems that track
the propagation of context. Vassena et al. [31] expand the
study to the dynamic setting. Xiang and Chong [33] use
opaque labeled values in their study of dynamic coarse-
grained information flow control for Java-like languages.
However, in both cases, the considered policies are tran-
sitive. An interesting avenue for future work is to explore
whether these approaches can be integrated with ours to
be able to handle nontransitive policies.

Our proof-of-concept implementation of the flow-
sensitive analysis for Java draws on Hammer and Snelt-
ing’s JOANA [10], [11]. Note that our reduction results are
general, enabling the use of other practical flow-sensitive
analyses like Pidgin [16] by Johnson et al. for tracking
nontransitive policies.

8. Conclusion

In order to support module-level coarse-grained
information-flow policies, Nontransitive Noninterference

Minimal lattice

15

, A → B B → CNontransitive policy:

Asink

Asource

Bsink

Bsource

Csink

Csource

⊤

⊥

Takeaways

16

- We got inspired by Lu & Zhang work on nontransitive noninterference

- Nontransitive policies are interesting and we expect other applications (e.g., social
network restrictions on who can view user’s post)

- Our paper shows that we can reuse much of the existing info flow machinery to
enforce nontransitive policies

- Minimal lattice encoding remains tantalizing

- Paper details:

- https://www.cse.chalmers.se/research/group/security/ntni/

