Nontransitive Policies Transpiled

Mohammad M. Ahmadpanah / Chalmers University of Technology / mohammad.ahmadpanah@chalmers.se
Aslan Askarov / Aarhus University / aslan@cs.au.dk
Andrei Sabelfeld / Chalmers University of Technology / andrei@chalmers.se

Information Flow

Security classes

[Puwlic] — [secret |

Flow relation

Flow Relation

Public] — [Secret] — [Top Secret]

The argument for transitivity of the flow relation

“Since A — B implies permission to move a value X from [...]
class A to [...] class B, and B — C implies it is in turn permissible
to move X to [...] class C, an inconsistency arises if A - C”

[D. Denning, A lattice model for secure information flow, 1976]

The argument assumes that when X is moved its original classification is lost

Yet, transitivity of the flow relation is not always desirable, especially in
coarse-grained settings!

3

A case for nontransitivity

[Lu & Zhang, CSF 2020}

. : : Ali {
« Consider a system w/ three components: Alice, Bob, Charlie o ata:
 Alice permits Bob to read her data, but not Charlie) maméibfreceive(d\ata);
* Bob permits his data to be read by Charlie : Pob 00 ()
}
e WehaveA —- B,B — C,butA » C . 1
, . . Bob\{
* |f Bob’s component sends anything to Charlie, it must be o datal:
only Bob’s information, and not Alice’s H dataz;
12 receive(x) { datal = x; }
13 good() { Charlie.receive(data2); }
14 bad() { Charlie.receive(datal); }
15 }
16 Charlie {

-
~J

data;
receive(x) { data = x; }

=
00

}

-
O

 (Consider a system w/ three components: Alice, Bob, Charlie

[Lu & Zhang, CSF 2020}

* Alice permits Bob to read her data, but not Charlie

Bob permits his data to be read by Charlie

e WehaveA —- B,B — C,butA » C

If Bob’s component sends anything to Charlie, it must be
only Bob’s information, and not Alice’s

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

A case for nontransitivity

Alice {

data;
main() {
Bob.receive (data);

Bob.good () ;
Bob.bad () ;

}

}

Bob\.{

datal;

data?2; /\
receive(x) { datal = x; }

good() { Charlie.receive(data2); }

OK bad() { Charlie.receive(dathl); }
Charlie {
data 2

}

receive(x) { data = x; }

A case for nontransitivity

[Lu & Zhang, CSF 2020}

Alice {

 (Consider a system w/ three components: Alice, Bob, Charlie data:
main() {

* Alice permits Bob to read her data, but not Charlie Bob. receive (data) :
» Bob permits his data to be read by Charlie DoD-good))?

e WehaveA —- B,B — C,butA » C

* |f Bob’s component sends anything to Charlie, it must be
only Bob’s information, and not Alice’s

Bob\.{
datal;
data?2;
receive(x) { datal = x3
good() { Charlie.receive(§ata2); }

 Lu & Zhang’s approach

bad() { Charlie.receive(datal); }

 nontransitive flow relation — gharlie { /
C ey - . d ;
 new definition of nontransitive noninterference (NTNI) - rZZZive(X) [aa =2
that generalizes standard NI 19}

* specialized type system for enforcement
 new proof of soundness

This paper

Standard (transitive) information flow machinery can enforce
nontransitive noninterference

Two steps
Program transformation Lattice encoding

The answer to “dropping the lattice assumption” is ... power lattices :-)
 Based on the insight from complex label models such as DLM [Myers & Liskov, 1998] and DC [Stefan et al., 2011]

O© 0 N OO O & W N =

e e e e
OO O b WO N = O

17

i
©O© 00

From Nontransitive to Transitive

Alicjafz . Observation: parts of the component state such as Bob.data1 are
main() { used as both sources (inputs to the system) aWputs)
Bob.receive(data);
Bob.good () ; . . .
Bob.bad () ; Step 1: rewrite the program so that sink and source usage is separated
} - source vars (inputs) are never modified (read-only)
¥ - sink vars (outputs) are never read (write-only)
Bob { . .
datal: - all other updates are done in temp variables
data?2;

receive(x) { datal = x; }

good() { Charlie.receive(data2); } Bob.datal is substituted by 3 vars:

bad() { Charlie.receive(datal); } - Bob.datal (* contains i1nitial value of Bob.datal *)
} - Bob.datal sink (* contains final value of Bob.datal *)
Charclii:aj[- Bob.datal temp (* for intermediate values of Bob.datal *)
receive(x) { data = x; }
} Add initialization/finalization that copy to/from the temp vars

The rewritten program is semantically
equivalent to the original (modulo renaming and
having 3x more variables in the state)

Example of the Rewriting

Alice {

1 1 // init
: Idnzzz()) > Alice.data_temp := Alice.data;
f Bob.receive (data): 3 Bob.datal_temp := Bob.datal;
5 Bob.good () ; 4 Bob.data2_temp := Bob.dataZ2;
j) Bob.bad () ; 5 Charlie.data_temp := Charlie.data;
6
z ;Ob { 7 Bob.datal_temp := Alice.data_temp;
10 datal; 8 Charlie.data_temp := Bob.data2_temp;
11 data2; 9 Charlie.data_temp := Bob.datal_temp;
12 receive(x) { datal = x; }
13 good() { Charlie.receive(data2); } L0
14 bad() { Charlie.receive(datal); } 11 // final
15} 12 Alice.data_sink := Alice.data_temp;
1: Charclii:af 13 Bob.datal_sink := Bob.datal_temp;
iy receive(x) { data = x: } 14 Bob.data2_sink := Bob.data2_temp;
19 } 15 Charlie.data_sink := Charlie.data_temp;
Before After (with inlining of main for reader’s convenience)

From Nontransitive to Iransitive

Observation: nontransitive A — B is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive — relation on components, represent each component by two levels in

a powerset-lattice: one level for source and one for sinks

Nontransitive policy:

SOUrCE

sink

B

source
B

sink

C

source

C

sink

A—->B B—->C

{A,B,C}

N

tA,B]

A,C)

1B,C}

X

A}

(B}

(C}

N

10

Standard (transitive) power-lattice

Lattice element {x, ..
security class that can read source data of

components Xy, ...,

Xn

., X, jcorresponds to a

From Nontransitive to Iransitive

Observation: nontransitive A — B is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive — relation on components, represent each component by two levels in
a powerset-lattice: one level for source and one for sinks

Nontransitive policy: A — B, B — C

A
source {A,B,C}
A

sink / | \ Lattice element {x, ..., x, }corresponds to
security class that can read source data of
{A,B} {A,C} {B,C} components X, ..., X
Bsource _> ? i
B . | >< | >< '

A} (B} (C}

7
{

C

sink

Standard (transitive) power-lattice

11

From Nontransitive to Iransitive

Observation: nontransitive A — B is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive — relation on components, represent each component by two levels in
a powerset-lattice: one level for source and one for sinks

Nontransitive policy: A — B, B — C

{A,B,C)
A / | \ Lattice element {x;, ..., X, }corresponds to
security class that can read source data of

{A,B} {A,C} {B,C} components xy, ..., X

PPy |

A} (B} (C}

Asource%e / Csmtrce

- 0
Standard (transitive) power-lattice

sink

12

Theorem

Given a program ¢ and a nontransitive flow relation —, there is a program ¢’
that is semantically equivalent to ¢ (modulo temp-var rewriting) and a
transitive flow relation — " such that

NTNI (¢, —)< TNI (¢/, =)

13

What’s the Theorem good for?

No need to use special type systems for NTNI — just use what’s out there!

For the formal calculus

Flow-sensitive type system of [Hunt &
Sands, POPL’006] is strictly more
permissive than the specialized type
system of [Lu & Zhang, CSF’20]

For Java

Case studies using JOANA
information flow analyzer [Hammer,
Snelting, 2020]

1 setLattice e<=A,e<=B,e<=(C,A<=AB,A<=AC,B<=AB,
2 B<=BC, AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC
3 source Alice.data_source A

4 sink Alice.data_sink A

5 source Bob.datal source B

6 sink Bob.datal_sink AB

7 source Bob.data2 source B

8 sink Bob.data2_sink AB

9 source Charlie.data_source C

10 sink Charlie.data_sink BC

11 run classical-ni

Lattice model input to JOANA for the running example
14

Alternatives to power-lattice

Nontransitive policy: A — B, B — C

T
T \
Bsink CSOUI’CG! Csink

Asink Bsink Cesink / /

ASOUFCG! Asink Bsource

Asource Bsource Csource \

1
1
Source-sink lattice via Dedekind-MacNeille
completion algorithm Minimal lattice

15

Takeaways

- We got inspired by Lu & Zhang work on nontransitive noninterference

- Nontransitive policies are interesting and we expect other applications (e.g., social
network restrictions on who can view user’s post)

- Our paper shows that we can reuse much of the existing info flow machinery to
enforce nontransitive policies

- Minimal lattice encoding remains tantalizing
- Paper detalls:

- https://www.cse.chalmers.se/research/group/security/ntni/

mlil
i

'*L

it

16

