Nontransitive Policies Transpiled

Mohammad M. Ahmadpanah / Chalmers University of Technology / mohammad.ahmadpanah@chalmers.se
Aslan Askarov / Aarhus University / aslan@cs.au.dk
Andrei Sabelfeld / Chalmers University of Technology / andrei@chalmers.se
Information Flow

Security classes

Public → Secret

Flow relation
The argument for transitivity of the flow relation

“Since $A \rightarrow B$ implies permission to move a value x from [...] class A to [...] class B, and $B \rightarrow C$ implies it is in turn permissible to move x to [...] class C, an inconsistency arises if $A \nrightarrow C$”

[D. Denning, *A lattice model for secure information flow*, 1976]

The argument assumes that when x is moved its original classification is lost

Yet, transitivity of the flow relation is not always desirable, especially in coarse-grained settings!
A case for nontransitivity

[Lu & Zhang, CSF 2020]

- Consider a system w/ three components: Alice, Bob, Charlie
 - Alice permits Bob to read her data, but not Charlie
 - Bob permits his data to be read by Charlie
- We have $A \rightarrow B$, $B \rightarrow C$, but $A \nrightarrow C$
 - If Bob’s component sends anything to Charlie, it must be only Bob’s information, and not Alice’s
A case for nontransitivity

[Lu & Zhang, CSF 2020]

- Consider a system with three components: Alice, Bob, Charlie
 - Alice permits Bob to read her data, but not Charlie
 - Bob permits his data to be read by Charlie
- We have $A \rightarrow B, B \rightarrow C$, but $A \nrightarrow C$
 - If Bob’s component sends anything to Charlie, it must be only Bob’s information, and not Alice’s
A case for nontransitivity

[Lu & Zhang, CSF 2020]

- Consider a system w/ three components: Alice, Bob, Charlie
 - Alice permits Bob to read her data, but not Charlie
 - Bob permits his data to be read by Charlie
- We have \(A \rightarrow B, B \rightarrow C, \) but \(A \nrightarrow C \)
 - If Bob’s component sends anything to Charlie, it must be only Bob’s information, and not Alice’s
- Lu & Zhang’s approach
 - nontransitive flow relation \(\rightarrow \)
 - new definition of nontransitive noninterference (NTNI) that generalizes standard NI
 - specialized type system for enforcement
 - new proof of soundness

```
Alice {
    data;
    main() {
        Bob.receive(data);
        Bob.good();
        Bob.bad();
    }
}
Bob {
    data1;
    data2;
    receive(x) { data1 = x; }
    good() { Charlie.receive(data2); }
    bad() { Charlie.receive(data1); }
}
Charlie {
    data;
    receive(x) { data = x; }
}
```
This paper

Standard (transitive) information flow machinery can enforce nontransitive noninterference

Two steps

Program transformation Lattice encoding

The answer to “dropping the lattice assumption” is … power lattices :-)

- Based on the insight from complex label models such as DLM [Myers & Liskov, 1998] and DC [Stefan et al., 2011]
From Nontransitive to Transitive

Observation: parts of the component state such as Bob.data1 are used as both sources (inputs to the system) and sinks (outputs)

Step 1: rewrite the program so that sink and source usage is separated
- source vars (inputs) are never modified (read-only)
- sink vars (outputs) are never read (write-only)
- all other updates are done in temp variables

Bob.data1 is substituted by 3 vars:
- Bob.data1 (* contains initial value of Bob.data1 *)
- Bob.data1_sink (* contains final value of Bob.data1 *)
- Bob.data1_temp (* for intermediate values of Bob.data1 *)

Add initialization/finalization that copy to/from the temp vars

The rewritten program is semantically equivalent to the original (modulo renaming and having 3x more variables in the state)
Example of the Rewriting

Before

```plaintext
Alice {
    data;
    main() {
        Bob.receive(data);
        Bob.good();
        Bob.bad();
    }
}
Bob {
    data1;
    data2;
    receive(x) { data1 = x; }
    good() { Charlie.receive(data2); }
    bad() { Charlie.receive(data1); }
}
Charlie {
    data;
    receive(x) { data = x; }
}
```

After (with inlining of main for reader's convenience)

```plaintext
// init
Alice.data_temp := Alice.data;
Bob.data1_temp := Bob.data1;
Bob.data2_temp := Bob.data2;
Charlie.data_temp := Charlie.data;
Bob.data1_temp := Alice.data_temp;
Charlie.data_temp := Bob.data2_temp;
Charlie.data_temp := Bob.data1_temp;
// final
Alice.data_sink := Alice.data_temp;
Bob.data1_sink := Bob.data1_temp;
Bob.data2_sink := Bob.data2_temp;
Charlie.data_sink := Charlie.data_temp;
```
Observation: nontransitive $A \rightarrow B$ is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive \rightarrow relation on components, represent each component by two levels in a powerset-lattice: one level for source and one for sinks

Nontransitive policy: $A \rightarrow B, B \rightarrow C$
From Nontransitive to Transitive

Observation: nontransitive $A \rightarrow B$ is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive \rightarrow relation on components, represent each component by two levels in a powerset-lattice: one level for source and one for sinks

Nontransitive policy: $A \rightarrow B$, $B \rightarrow C$

Security class that can read source data of B and C

Lattice element $\{x_1, \ldots, x_n\}$ corresponds to security class that can read source data of components x_1, \ldots, x_n

Standard (transitive) power-lattice
From Nontransitive to Transitive

Observation: nontransitive $A \rightarrow B$ is really about permitting flows from A’s source to B’s sink

Step 2: given nontransitive \rightarrow relation on components, represent each component by two levels in a powerset-lattice: one level for source and one for sinks

Nontransitive policy: $A \rightarrow B, B \rightarrow C$

Standard (transitive) power-lattice

Security class that can read source data of B and C

Lattice element $\{x_1, \ldots, x_n\}$ corresponds to security class that can read source data of components x_1, \ldots, x_n
Theorem

Given a program c and a nontransitive flow relation \to, there is a program c' that is semantically equivalent to c (modulo temp-var rewriting) and a transitive flow relation \to' such that

$$\text{NTNI} (c, \to) \iff \text{TNI} (c', \to')$$
What’s the Theorem good for?

No need to use special type systems for NTNI – just use what’s out there!

For the formal calculus

Flow-sensitive type system of [Hunt & Sands, POPL’06] is strictly more permissive than the specialized type system of [Lu & Zhang, CSF’20]

For Java

Case studies using JOANA information flow analyzer [Hammer, Snelting, 2020]

```
1    setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB,
2     B<=BC,AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC
3  source Alice.data_source   A
4   sink   Alice.data_sink    A
5  source Bob.data1_source    B
6   sink   Bob.data1_sink     AB
7  source Bob.data2_source    B
8   sink   Bob.data2_sink     AB
9  source Charlie.data_source C
10  sink   Charlie.data_sink  BC
11  run    classical-ni
```

Lattice model input to JOANA for the running example
Alternatives to power-lattice

Nontransitive policy: $A \rightarrow B, B \rightarrow C$

Source-sink lattice via Dedekind-MacNeille completion algorithm

Minimal lattice
Takeaways

- We got inspired by Lu & Zhang work on nontransitive noninterference
- Nontransitive policies are interesting and we expect other applications (e.g., social network restrictions on who can view user’s post)
- Our paper shows that we can reuse much of the existing info flow machinery to enforce nontransitive policies
- Minimal lattice encoding remains tantalizing
- Paper details:
 - https://www.cse.chalmers.se/research/group/security/ntni/