
Regaining Lost Cycles with HotCalls:
A Fast Interface for SGX Secure Enclaves

Ofir Weisse Valeria Bertacco Todd Austin
University of Michigan

{oweisse,vale,austin}@umich.edu

Cloud computing allows lowering the cost of computation
and storage, outsourcing the acquisition and maintenance to
a third party. Using hardware and software under the control
of a third party implies substantial trust: trust that the service
provider will not snoop on the data on its servers and will not
tamper with the execution flow. Even if the cloud provider
can be trusted not to actively snoop or tamper with processed
data, there is implicit trust in the operating system, the virtual
machine manager, and the firmware (BIOS & System Man-
agement Mode code - SMM). A compromise in the security
of any of these, by means of remote attack or rogue employee
tampering with the hardware, leads to the compromise of the
information and execution on the cloud.

In 2015, Intel released Skylake micro-architecture, the first
x86 production processor featuring a secure execution tech-
nology - Software Guard Extensions (SGX). This technology
allows secure execution in user-space (ring 3) in a container
called a secure-enclave which is shielded from the OS, VMM,
and SMM. Ideally, no vulnerability or intentionally malicious
code in any of these layers should compromise the confiden-
tiality or the integrity of the secure-enclave. No probing of
physical buses outside the processor chip should compromise
the security, as the memory is encrypted as well.

This work gives the first taxonomy of the operations in-
volved in using the SGX framework and their costs in cycles.
Through these observations, we offer a performance boost-
ing alternative interface to interact with secure-enclaves. We
found that the overhead of calling a secure-enclave function
takes between 8,600-17,000 cycles (depending on cache state),
compared to 150 cycles for a regular OS syscall, and compared
to 1300 cycles for a hyper-call in a KVM virtualization solu-
tion. We also found that the mechanism allowing secure code
to interact with the application or OS outside the enclave in-
curs between 8,200-17,000 cycles (depending on cache state).
This is a 54x-113x degradation in performance compared to
OS calls.

The overhead of SGX-related calls becomes a significant
bottleneck in applications with high system call frequency.
For instance, a database application serving 200,000 requests
per second (e.g., Memcached) requires at least 200,000 system
calls to send the responses on the network. According to
our measurements, each call consumes at least 8,200 cycles,
totaling 1,640 million cycles. On a 4 GHz core, this amounts
to 41% of the core time spent on merely facilitating the calls,
without doing any actual work. Our evaluation of non-trivial
applications shows that this is not a hypothetical problem.

Identifying that context switches used for facilitating system
calls are a major bottleneck in SGX applications, we design
and implement HotCalls - an alternative interface for calling

enclave functions and requesting system calls by the enclave.
HotCalls are based on a spin-lock synchronization mechanism,
and provide more than an order of magnitude speedup. Com-
pared to the standard SGX SDK framework, HotCalls cost
only 620 cycles in most cases, a 13-27x improvement.

We evaluate the performance of three non-trivial applica-
tions within SGX: OpenVPN (encrypted tunnel), Memcached
(memory based database), and Lighttpd (fast HTTP server),
using a straightforward approach to port them into SGX secure-
enclaves. We show that using HotCalls it is possible to im-
prove throughput by 2.6-3.7x and reduce the applications’
response latency by 62-74%.

To summarize, we make the following contributions:
• Identify and analyze fundamental operations in SGX tech-

nology which have major performance implications. We
provide the first comprehensive evaluation of the latency
of each such operation, by designing and running a set
of micro-benchmarks. Based on the micro-benchmarks’
results, we offer best practices for using SGX when perfor-
mance is just as important as security.

• Leveraging the insights from the micro-benchmarks, we de-
sign and implement an alternative calling-interface to SGX,
HotCalls, for communication between secure-enclaves and
untrusted code, which is 13-27x faster than the existing
mechanism provided by the SGX SDK. Source code of
HotCalls is available at online (will be up soon).

• We evaluate the benefit of HotCalls on widely used applica-
tions: OpenVPN, Memcached, and Lighttpd, showing that
the throughput of these applications can be improved by a
factor of 2.6-3.7x and the response latency can be reduced
by 62-74%.


