Poster: Challenges and next steps in binary program analysis with angr

Christophe Hauser
Information Sciences Institute
University of Southern California
hauser@isi.edu

Abstract—In the past decade, academic interest for binary
program analysis models, tools and techniques has received
increasing interest. As a result, recent advances have been
pushing the limits forward, as demonstrated by the Cyber
Grand Challenge, a competition organized by DARPA, as well
as recent academic work in the field. However, despite this
progress, a number of challenges remain to be addressed in
order to solve current and future problems related to security
and privacy in binary programs and applications. We give a
description of some of these challenges, along with practical
suggestions for future work and improvement over the current
state of the art.

1. Introduction

Despite the prominence of interpreted languages and
open-source projects, the ability to assess the security of pro-
grams and applications based on the analysis of their binary
executable form remains an important problem for solving
vulnerability discovery and reverse engineering challenges.
Reasons motivating binary analysis include the presence of
(or dependence on) proprietary code, abstract differences
between source code and assembly representations, and the
existence of bugs in compilers and tool chains, among
others. Increasing academic interest over the last decade,
led to a number of open-source binary analysis platforms
freely available on the internet [1], [2], [3], [4], [5], [6],
among which angr is a framework that we built in order
to experiment with new and existing analysis techniques in
a composable way, and to increase the reproducibility of
academic models and prototypes [7], [8].

However, while recent advances pushed the limits for-
ward, a number of challenges remain to be addressed in or-
der to apply those new techniques on real-world programs in
an extensible and scalable manner. Such challenges include
the analysis of third party libraries, low-level programmatic
concepts such as those found in kernel and embedded code,
as well as modeling high level abstractions necessary to
reason about certain classes of bugs.

1.1. Incremental vulnerability discovery

The vast majority of software projects rely on third party
code and libraries, and by design, need to trust this exter-

Yan Shoshitaishvili
Arizona State University
shoshitaishvili@asu.edu

Ruoyu Wang
University of California, Santa Barbara
fish@cs.ucsb.edu

nal code. However, even widely used and tested projects
and libraries suffer from security bugs, whether these are
benign (i.e., have been inserted accidentally) or malicious
(i.e., were voluntarily inserted in the code by an attacker).
Current approaches to detect security bugs are typically
involved after the software release, and in some cases, it
takes up to years until critical security bugs are found,
because of the difficulty of manual analysis, and the inherent
limitations of automated tools, such as the trafe-offs one
has to make between accuracy and coverage. Closing the
gap between code size/complexity and the level of accuracy
that can be achieved with automated tools is therefore a
research direction of interest. Meanwhile, reasoning about
large code bases such as the code of external libraries
remains a daunting task without a better understanding of the
possible execution contexts or code paths of interest within
the binary. Attempts to improve coverage based on fuzzing,
symbolic execution and mixed static/dynamic analysis [9],
[10], while successful in some cases, are inherently bound
to the same coverage limits. One way to move forward is
to reduce the analysis scope, either in terms of space, or
time in the development life-cycle of a software product.
For instance, an important aspect to consider is that most
vulnerabilities are introduced by single commits affecting
only isolated parts of the modified code. In this context,
incremental software testing can be leveraged to help model
the effects of increments (i.e., relatively small changes in
the code, such as the effects of a patch) over the execution
environment of the evaluated software, and to derive new
techniques and heuristics to detect dangerous code changes
as part of complex code bases.

1.2. Analyzing closed-source embedded firmware

The current state-of-the-art in binary firmware anal-
ysis leaves a number of open problems untouched. For
instance, embedded devices sometimes suffer from incorrect
implementations of cryptographic functionalities. Similarly,
memory corruption bugs are still regularly found and ex-
ploited by attackers, and firmware is no exception. Auto-
matically detecting vulnerabilities in embedded firmware
remains challenging, because of the low-level nature of
the software abstractions involved, but also because of the
specificity of the hardware in use. For example, reasoning

about concurrency (i.e., multithreading) or analyzing kernel
code paths subject to preemptive behavior (e.g., interrup-
tions), among other problems, are challenging due to the
complexity to model the required abstractions using current
analysis techniques. Steps in this direction would extend
the coverage of current automated analysis systems. Fur-
thermore, modern embedded devices often rely on hardware
implemented using System on Chip (SoC) devices. Such
devices generally use known architectures, but incorporate
additional circuitry which specifications often are not pub-
licly available. The ability to model interactions with such
hardware at the software level, without the need to interact
with the actual hardware, is an important factor towards
automated analysis of embedded firmware. Steps forward
in this direction include more accurate modeling of asyn-
chronous behavior by borrowing concepts from distributed
computing [11] as well as the extension of current analysis
platforms with firmware re-hosting capabilities, automated
reasoning about instructions/library calls/system calls whose
specifications are not available, and hardware/OS interface
identification.

1.3. Reducing semantic gaps

Past and current research in vulnerability discovery
mostly focus on modeling particular classes of bugs, such
as buffer overflows or use after free, but in practice, fail
to identify higher-level logic bugs due to their complex-
ity, causing security vulnerabilities to remain undiscovered.
This is especially true at the binary-level, because of the
lack of semantic information in the recovered assembly,
increasing the gap with higher-level program logic. Ex-
ample of higher-level logic bugs include incorrect inter-
actions between functions, information leakage, defects in
cryptographic implementations and backdoors. On the one
hand, attempts were made to bridge this semantic gap by
recovering e.g., type information from disassembly [12],
while on the other hand, past works have successfully
leveraged code similarity measurement techniques based on
syntactic [13] and semantic [14] properties to find bugs
across binaries of different architectures. With the advent of
online communities, programmers leverage online forums
to often exchange “code snippets” representing solutions to
common algorithmic problems. Such code snippets typically
represent only part of a function, and are inserted as-is, with
very little to no modifications, in the final code. In practice,
it is reasonable to expect that a subset of this code is subject
to security vulnerabilities, and that it may be found in both
open-source an proprietary code. Furthermore, similarities
also intrinsically exist between bugs (e.g., buffers size de-
pending on user input). Drawing on the success of code sim-
ilarity techniques, and by leveraging the large language and
architecture support offered by the LLVM compiler under
the same intermediate representation, further identification
of semantic bug patterns “at scale” is a promising direction
for extending the scope of vulnerability analysis models. In
particular, by leveraging machine learning in combination

with program analysis techniques', insecure coding patterns
may be learned from communities and translated to an
intermediate representation where the knowledge of such
insecure patterns can later be used as input for binary
program analysis, and to identify new insecure patterns in
closed-source software.

References

[1] “Unix-like Reverse Engineering Framework and Command-line
Tools*. http://radare.org.

[2] “angr, the Next Generation Binary Analysis Platform from UC Santa
Barbara!”. http://angr.io.

[3] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A
Binary Analysis Platform,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 463-469.

[4] “BinNavi is a binary analysis IDE that allows to inspect, navigate,
edit and annotate control flow graphs and call graphs of disassembled
code®. https://github.com/google/binnavi.

[5] C. Heitman and 1. Arce, “BARF: A Multiplatform Open Source Bi-
nary Analysis and Reverse Engineering Framework,” in XX Congreso
Argentino de Ciencias de la Computacion (Buenos Aires, 2014),2014.

[6] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze:
Binary Analysis for Computer Security,” 2013.

[71 Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel er al.,
“SOK:(State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 138-157.

[8] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-Automatic Detection of Authentication Bypass Vulnera-
bilities in Binary Firmware.” in NDSS, 2015.

[91 N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of
the Network and Distributed System Security Symposium, 2016.

[10] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” 2017.

[11] J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng,
“A Formal Study of Slicing for Multi-threaded Programs with JVM
Concurrency Primitives,” in International Static Analysis Symposium.
Springer, 1999, pp. 1-18.

[12] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled Reverse
Engineering of Types in Binary Programs,” 2011.

[13] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Ef-
ficient Cross-architecture Identification of Bugs in Binary Code,”
in Proceedings of the 23th Symposium on Network and Distributed
System Security (NDSS), 2016.

[14] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Lever-
aging Semantic Signatures for Bug Search in Binary Programs,”
in Proceedings of the 30th Annual Computer Security Applications
Conference. ACM, 2014, pp. 406-415.

1. Such as code reuse detection, code diffing, function inlining and
automatic function summarization.

