
Poster: End-to-End Service for System Security Experimentation

Christophe Hauser
Information Sciences Institute

University of Southern California
hauser@isi.edu

Zhenkai Liang
National University of Singapore

liangzk@comp.nus.edu.sg

Stephen Schwab
Information Sciences Institute

University of Southern California
sschwab@isi.edu

Abstract—Countering constantly evolving internet security
threats such as worms, botnets or distributed denial of service
attacks (DDOS), requires realistic and accurate modeling of
software components as well as the environment in which they
interact. To this end, security experimentation test beds such
as DeterLab have been focusing on the ability to reproduce a
large range of experimental scenarios in a safe and accessible
manner. The span of current test bed environments varies from
the emulation of network architectures and protocols to the
modeling of smart power grid systems. With a focus on network
and system infrastructures, test bed environments have been
supporting research in cyber security across numerous fields
of application over many years. However, while many aspects
of cyber security can be approached from a networking angle,
the task of accurately modeling vulnerable and malicious ap-
plications and their interactions with the environment requires
an understanding of low-level operating system abstractions as
well as inner-application constructs that current state of the art
test bed environments fail to represent. To this end, we aim to
extend Deter with state-of-the-art program analysis models and
techniques and leverage the resulting extended environment to
develop new capabilities and novel approaches in terms of
vulnerability analysis, discovery and incidence response.

1. Introduction

Experimentation is a critical process in system security
research, where researchers allocate the required hardware
and networking infrastructure, set up the system and soft-
ware environments, analyze target security problems, and
validate their solutions. Many solutions have been proposed
to facilitate security experimentation, in terms of infras-
tructure allocation [1] and environment setup [2]. However,
researchers still need to go through a time-consuming man-
ual effort to setup the environment with a diverse range
of tools to analyze security problems, which significantly
hinders the efficiency and scalability of system security
experimentation.

In recent years, program analysis techniques have made
substantial progress, both to analyze the source code of
applications, and to directly analyze their executable form
in binary code. The result of these advances, which have
been published in the form of academic papers and related

tools [3], [4], [5], [6]) is now accessible for experts to use
and experiment with. The potential applications of these
tools and techniques range from vulnerability discovery and
malware analysis to security assessment. However, despite
this sharing of knowledge and transfer of technology, access
to these advances remains difficult for most users, because
of the particular skills that are required to successfully
make a fruitful use of such complex specialized software,
which are exposing numerous low-level abstractions and
inner details about the underlying approaches. Researchers
and students would nonetheless benefit from the result of
program analysis as part of their projects, since these offer
valuable implementation of concepts, automation and se-
mantic reasoning that cannot directly be achieved by other
means. As a result of this observation, we propose to bring
program analysis capabilities within the Deter cyber security
experimentation test bed, as a new infrastructure providing
“program analysis as a service”.

The current state of the art in terms of program analysis
tools offers a range of advanced, but isolated analyses
capabilities. For instance, the angr binary analysis plat-
form currently has a powerful symbolic execution engine,
but limited support for full system dynamic analysis. On
the contrary, DECAF [7], the Dynamic Executable Code
Analysis Framework (the successor of Bitblazes TEMU)
brings powerful dynamic execution and tainting support. By
bringing together tools with different, but complementary
capabilities, the objective of the Deter program analysis
environment is to offer analysis as a service in the Deter
environment.

2. Goals

Usability – we propose a novel approach to conceptual-
ize program analysis, with an organization of key principles
in the form of semantic analysis building blocks, which,
combined together, can be used by non-expert analysts to
build analyses that fit a wide range of requirements. Each
building block offers an abstraction of a program analysis
concept, leaving freedom to the analyst to experiment with
state of the art techniques without having to learn each con-
cept in detail. The construction of such building blocks will
be based on a review of current state of the art abstractions in
program analysis, along with a specification of their scope of

reliability, i.e., in which contexts each particular analysis is
reliable. For example, a data dependence analysis based on
pure symbolic execution is likely to explode in the presence
of loops, but offers high accuracy, while the same analysis
built in an abstract static domain such as value-set analysis
guarantees termination, but offers a coarser level of details
which may not be satisfactory in some situations.

Reproducibility – most state-of-the-art techniques, such
as those presented in the academic literature, were eval-
uated by executing prototypes on size-limited datasets or
in constrained environments. The ability to reproduce such
experiments outside of their initial environments, and to
gather statistics about the efficiency and efficacy of various
approaches, or occurrences of certain types of vulnerabilities
or malicious behavior in real-word software are interesting
outcomes of research in that direction. However, the full
automation of entire end-to-end analyses is out of the scope
of this project, due to the extreme difficulty of scaling
such analyses at the binary level without partly relying
on program and environment specific knowledge provided
by manual investigation and human judgement. This dif-
ferentiates our approach from e.g., the SWAMP [8], which
provides a collection of end-to-end analyses on the source
code of applications. In order to best reproduce such results,
we propose to build a database of existing known vul-
nerabilities, e.g., from Common Vulnerabilities and Expo-
sures (CVE) entries provided by the National Vulnerability
Database (NIST). It should be emphasized, however, that the
sole knowledge of a CVE entry is not enough for accurate
reproducibility, since such entries generally only provide
a high-level description of the vulnerability, without any
associated exploits or details about the vulnerable versions
of the affected software. As a result, it is necessary for
researchers to manually analyze the source code of the
associated projects in order to gather a precise understanding
of vulnerabilities, and this step is therefore a prerequisite in
this project.

Scalability – relying on solid semantic analysis building
blocks, tested and refined against real-world examples dur-
ing the previous step of reproducibility, makes it possible to
leverage the Deter infrastructure in order to perform large-
scale experiments, and to offer automated analyses as an
online service to remote users. By offering a range of sample
automated analysis based on our system, we aim to run large
scale experiments and discover new vulnerabilities in real-
world binary software, collect new real-world vulnerable
programs or malware samples, and generate usage statistics
(from a usability standpoint, i.e., how researchers approach
the task of analyzing software) and statistics about properties
of existing vulnerabilities in real-world binary software.

Novelty – integrating these tools, techniques and
datasets as part of a cyber security experimentation test bed,
brings the opportunity to experiment with new approaches
on large corpora of data, thus allowing academic research
to advance the current state of the art in large-scale cyber
experimentation.

Applications – by employing tools from multiple do-
mains of program analysis, and by leveraging a database

of vulnerable software (CVE), along with their respective
exploits, we aim to provide an environment for experimen-
tation, which allows users to reproduce, analyse and mitigate
vulnerabilities as part of the same framework. For instance,
while dynamic tracing allows a researcher to replay exploits
and identify vulnerable program paths, static analysis and
symbolic execution can be used to generalize the observed
vulnerability, and to produce valuable input to vulnerability
discovery algorithms, or to generate e.g., generic signatures
of exploits, which are not bound to a specific environment.
Currently, the vast majority of intrusion detection systems
(IDS) designed for commercial use are based on signatures
of exploits. Manually crafting these signatures requires a lot
of human investigation. The ability to generate signatures
automatically would be valuable to both increase coverage
and reduce response time. Similarly, the framework that we
propose would allow researchers to extend the scope of
current analysis tools in the contexts of incident response
and reverse engineering.

3. Related work

Similar efforts in the literature have focused on address-
ing the problem of scaling automated source code analysis.
The SWAMP [8], or Software Assurance Marketplace al-
lows code developers to assess the security of their code
by running a number of end-to-end source-level analyses
provided by third-party tools. Our approach, in contrast, is
modular (i.e., users build their own analyses based on se-
mantic analysis building blocks), semi-automated (requires
knowledge from the user) and focuses on the binary form
of applications (i.e., focuses on what is actually executed
by the machine and does not require the source code to be
available), thus extending the current scope to novel user-
driven analyses of proprietary software and malware.

References

[1] J. Mirkovic and T. Benzel, “Deterlab Testbed for Cyber-
security Research and Education,” J. Comput. Sci. Coll.,
vol. 28, no. 4, pp. 163–163, Apr. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2458539.2458567

[2] The Metasploit Framework. http://metasploit.com/.
[3] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: a New
Approach to Computer Security via Binary Analysis,” in International
Conference on Information Systems Security. Springer, 2008, pp.
1–25.

[4] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al.,
“SOK:(State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 138–157.

[5] “angr, the Next Generation Binary Analysis Platform from UC Santa
Barbara!”. http://angr.io.

[6] A Robust Code Analysis Platform for C/C++.
http://www.mlsec.org/joern/.

[7] A. Henderson, L. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant,
“DECAF: a Platform-Neutral Whole-System Dynamic Binary Analysis
Platform,” IEEE Transactions on Software Engineering, 2016.

[8] Software Assurance Marketplace. http://continuousassurance.org/.

