
Poster: Garbled Computations: Hiding Software,
Data, and all Computed Values

Omar Abou Selo∗, Chris Clifton†, Mikhail J. Atallah†, Qutaibah M. Malluhi∗, Abdullatif Shikfa∗ and Yongge Wang‡
∗Qatar University

{omaraselo, qmalluhi, ashikfa}@qu.edu.qa
†Department of Computer Science, Purdue University, West Lafayette, IN

matallah@purdue.edu, clifton@cs.purdue.edu
‡Department of SIS, UNC Charlotte, NC, USA

yongge.wang@uncc.edu

Abstract—Following is a new protocol for private function
evaluation using 3 non-colluding parties: Alice, Bob, and Carol.
A program owner and a data owner perform an initial setup
with Alice, Bob, and Carol and can then go offline until the
computation is done and the result is returned to either of them.
Throughout the execution, the program and data remain hidden
and do not leak any information to Alice, Bob, Carol or the
original owners.

I. INTRODUCTION

There have been substantial developments in computing on
encrypted data without revealing the data contents. Tools such
as Secure Multiparty Computation (SMC), Homomorphic En-
cryption, and Oblivious Computation have made great progress
toward this goal.

On the other hand private function evaluation (PFE), which
is the problem of hiding both the program and the data did
not see as much development. There are solutions that depend
on running universal circuits in SMC protocols [1] making the
program part of the input therefore hiding the program too, but
these incur additional logarithmic overhead to the complexity
and are difficult to implement. More recent solutions do not
use universal circuits [2] thereby avoiding the logarithmic
overhead complexity but are still not practical.

This work introduces a new three-party protocol that at-
tempts to make practical PFE possible. The protocol uses One
Instruction Set Computer (OISC) in combination with SMC
and additive homomorphic encryption (specifically Paillier
[3]) to hide the instructions’ execution. The following section
provides a brief high-level description of the protocol.

II. PROTOCOL

A. OISC

Using a OISC hides the nature of the instruction being
executed. Since there is only one type of instruction to execute,
knowing the instruction will not leak information about the
program. While there are several possible Turing-complete
instructions that can be used for OSIC, SUBLEQ stands out

This publication was made possible by the NPRP award X-063-1014 from
the Qatar National Research Fund (a member of The Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

as it provides good functionality and already has a compiler
from a C like higher language [4].

Assuming a SUBLEQ program P and its input data D, a
SUBLEQ instruction in this protocol has four memory address
operands A, B, C and D that performs the following:

1) D[B] = D[B]−D[A]
2) if(D[B] ≤ 0) go to instruction P[C], otherwise to P[D]

Note that this SUBLEQ instruction has two differences from
the generally used one. First, the instruction has one additional
operand D, such that when if condition is false P[D] is
executed instead of the very next instruction in the program.
Second, the program and data are separated such that A and B
address the data memory while C and D address the program
memory.

B. Initial phase

There are three computing facilities (e.g., cloud service
providers): Alice, Bob, and Carol. In addition, there is a
program owner who owns a SUBLEQ program P and there is
a data owner who owns a data set D. Assume that the program
P runs on the data set D for a maximum of T rounds (A
round represents the execution of one SUBLEQ instruction).
Carol sets up T Paillier encryption schemes and publishes
the T round public keys for encrypting the program sequence
P for each round. He also publishes one additional key for
encrypting D.

The data owner generates a random permutation πd to
permute and encrypt his data using the session data encryption
key. The data owner sends her permutation function πd to
the program owner and sends E(Dπd

) to Alice. The program
owner generates a random permutation πp to permute and
encrypt his program using the round 0 program encryption
key, and computes the current instruction pointer ic = πp(0).
The program owner sends E(Pπp

) together with the current
instruction pointer ic to Alice.

C. High level round phase

In a high level view, the goal of each round is for Carol and
a second party member (either Alice or Bob) to execute one
instruction then re-permute and re-encrypt the program and

data to pass it to the third party. In the following round, that
third party works with Carol to execute the next instruction
then re-permute and re-encrypt the program and data to pass
it back to the second party.

Specifically Alice starts with the encrypted and permuted
program and data in addition to the first instruction address.
She re-permutes the data and adds 0 to all it’s values to change
the ciphers. Then she works with Carol to re-permute and re-
encrypt the program too. She then executes the first step of
the SUBLEQ instruction which alters one data value. Now that
the new data has been changed, she can send it together with
the new program to Bob for him to use in the next round. She
then works with Carol and Bob to perform the second step of
the SUBLEQ instruction such that only Bob knows the next
instruction to be executed. This step uses SMC specifically
Garbled Circuits (GC) [5] to hide the inputs and only output
to Bob the next instruction address. At this point a round
has finished, the next round can proceed by Bob performing
Alice’s function and Alice performing Bob’s. This back and
forth execution repeats until the maximum number of rounds
allowed is reached. At that point the last altered data element
is decrypted by Carol and returned as the result. If the total
number of rounds is not known a priori, the execution can
stop when a specific termination address is reached. In this
scenario, Carol has to generate the keys dynamically.

III. ANALYSIS

A. Informal Security Analysis

The security model used in this work is a semi-honest model
with non-colluding servers.

An instruction execution doesn’t leak information. Since
data is encrypted using additive homomorphism the first part of
a SUBLEQ command can be executed easily using modular
multiplication. And since the second part of a SUBLEQ is
hidden using SMC, a single instruction execution doesn’t leak
information.

Program and Data remain hidden throughout rounds. In each
round either Alice or Bob will receive P and D re-permuted
and re-encrypted. Hence they cannot track the instruction
traces or memory access traces. Carol on the other hand knows
every permutation after the initial ones and holds all the keys,
however he doesn’t know P or D as they are with Alice and
Bob (in encrypted form).

B. Performance Evaluation

To understand the computational cost of running a SUBLEQ
program, identifying the cost of running a single instruction is
enough (total cost is T× single instruction cost). The bulk
of the computation cost in executing an instruction is in
the memory permutation. This requires a decryption and an
encryption for each argument in the program, a cost linear in
the size of the program. In addition, Alice has to compute
|D| encryptions of 0 and homomorphic additions to obfuscate
the data, however, these encryptions could be done offline. In
total, a single execution round requires about 4|P|+ |D|+ k0
encryptions, 4|P|+k1 decryptions and |D|+k2 homomorphic

additions where k0, k1 and k2 are some small constants. The
cost of the rest of the operations such as the permutations or
the small GC evaluation is negligible.

Communication cost is mainly affected by the size of D
and P . This is because D and P need to be sent from Alice
to Bob or Bob to Alice every round. Also the program needs
to be exchanged between Carol and the current party for re-
encryption. Taking into account the blow-up from additive
homomorphic encryption cipher size the communication cost
is 3×8192|P|+2048|D|+k3 bits (k3 is a small constant that
accounts for GC and some other minor details). This cost is
per round so it will be repeated T times.

C. Practical Evaluation

An initial system was developed to implement the proposed
protocol using C++ and OblivC [6]. Three processes denoting
Alice, Bob and Carol run on a single machine with a 3GHz
quad core intel Q9650 CPU and a 4GB DDR2 memory.

To evaluate the running time of the system, multiple pro-
grams have been tested. One example is fault tree analysis
(FTA). FTA is a method used in safety engineering to analyze
how a system can fail. It consists of a tree that combines
Boolean events to decide whether a failure will occur or not.
This method is widely used throughout the industry and in
some cases computing the result of fault-tree analysis in a
two-party secure way is desirable. FTA represents a realistic
application where private data is provided by the machine
owner while the private fault analysis program is provided
by the machine manufacturer.

For testing, a 5-gate fault tree analysis program was con-
verted into a 15-instruction SUBLEQ code that takes as input
9 data values. The SUBLEQ program ran for 12 rounds
(T = 12) on an average of 6.5 seconds.

IV. CONCLUSION

This work presents a novel protocol for Private Function
Evaluation using three non-colluding parties. It attempts at
being more practical than previous protocols. Future work in-
cludes, improving the protocol to reduce the computation and
communication cost, and improving the preliminary system
implementing it for faster running times.

REFERENCES

[1] V. Kolesnikov and T. Schneider, “A practical universal circuit construction
and secure evaluation of private functions,” in International Conference
on Financial Cryptography and Data Security. Springer, 2008, pp. 83–
97.

[2] P. Mohassel and S. Sadeghian, “How to hide circuits in mpc an efficient
framework for private function evaluation,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 557–574.

[3] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[4] O. Mazonka and A. Kolodin, “A simple multi-processor computer based
on subleq,” arXiv preprint arXiv:1106.2593, 2011.

[5] A. C.-C. Yao, “How to generate and exchange secrets,” in Foundations
of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986,
pp. 162–167.

[6] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious
computation.” IACR Cryptology ePrint Archive, vol. 2015, p. 1153, 2015.

