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Abstract—The aim of the smart grid is to achieve more efficient,
distributed and secure supply of energy over the traditional
power grid by using a bidirectional information flow between
the grid agents (e.g. generator node, customer). One of the
key optimization problems in smart grid is to produce power
among generator nodes with a minimum cost while meeting
the customer demand, known as Economic Dispatch Problem
(EDP). In recent years, many distributed approaches to solve
EDP have been proposed. However, protecting the privacy-
sensitive data of individual generator nodes has been largely
overlooked in the existing solutions. In this work, we show
an attack against an existing auction-based EDP protocol
considering a non-colluding semi-honest adversary. We briefly
introduce our approach to a practical privacy-preserving EDP
solution as our work in progress.

1. Introduction

The traditional power grid is going through some major
infrastructural changes to become smarter since the last
decade [4]. The smart grid proposes a bidirectional com-
munication network on top of the existing energy network
to make the grid more efficient and reliable. However, it
is important that while building new protocols for smart
grid, the privacy risks involved must be addressed and
mitigated. The Economic Dispatch Problem (EDP) is one
of the fundamental optimization problems in the power grid
community [2] [6]. The EDP solution gives a power output
combination of all generator nodes which achieves minimum
operating cost while supplying the demand to the customers.
The total cost of operation can be formulated as:

Ctotal =

n∑
i=1

Ci(xi) (1)

The notation used in our work is given in TABLE 1. The
objective of the EDP is to find optimal values for all xi’s
such that Ctotal is minimum. Furthermore, an EDP solution
should maintain the demand (2) and generator (3) constraints
as follows:

D −
n∑

i=1

xi = 0 (2)

xi ≤ xi ≤ xi (3)

Notation Description
n Total number of generator nodes

i, j, i, j Different generator nodes
A Non-colluding semi-honest attacker
t Discrete time step index
xi Output power of node i
xi(t) Output power of node i at round t
Ci Cost function of node i

ai, bi, ci Cost function parameters for quadratic convex part
ei, di Cost function parameters for non-convex part
D Total power demand for customers (public)

xi, xi Minimum and maximum output power limit of i
s Scalar parameter (public)

πi, µi Auction bids from node i
TABLE 1. NOMENCLATURE

The demand and generator constraints are straightfor-
ward as total power generation should be equal to the
demand and a generator node can not produce beyond its
generation limits. In recent years, instead of central EDP
calculation, many distributed EDP algorithms have been
proposed in context of the smart grid [2] [6]. However,
the privacy risks associated while sharing information with
other nodes is a major concern [5]. For example, revealing
one generator node’s cost function parameters, output power
and generator constraints to an another node can give the
competitor node a crucial advantage in the energy market.
In a competitive energy market, a competitor can outplay
its victim (knowing the auction bids from the victim’s cost
function). The distributed EDP solution techniques can vary
with the type of the cost function used. Conventionally, the
cost function used in EDP is modelled as a quadratic convex
function as follows [6]:

Ci(xi) = aix
2
i + bixi + ci (4)

As mentioned in [5], the privacy-sensitive data for
quadratic convex EDP are ai, bi, ci, xi(t), xi and xi.
Realistically, a sinusoidal term |di sin (ei(xi − xi))| is often
added to the cost function with some non-differentiable
points making the function non-convex [2]. In our previous
work [5], a private protocol for EDP calculation has been
proposed for a quadratic convex cost function.



2. Analysis of Binetti et al. [2]

Binetti et al. proposed an auction-based distributed con-
sensus protocol to solve EDP in [2]. Whereas another exist-
ing consensus approach based on a lamda-iteration method
[6] requires a smooth quadratic convex cost function, the
auction-based protocol from Binetti et al. is also applicable
to non-convex cost functions.

2.1. Original Protocol from Binetti et al.

For simplicity, we consider a fully connected network of
generator nodes. The core idea of the Binetti et al. protocol
is based on double auction, where each node can act as both
buyer and seller. The power output of each node is changed
by negotiating with other nodes. Initially, every node knows
a public scalar parameter s ∈ IR for searching optimal
values. At every time instance t, each node i generates two
output bids as follows:

πi(t) = Ci(xi(t) + s)− Ci(xi(t))

µi(t) = Ci(xi(t))− Ci(xi(t)− s)

The πi(t) ∈ IR value denotes the estimated increase in cost
for the increase of power output xi(t) to xi(t) + s. The
µi(t) ∈ IR is the amount of save in cost for the reduction
of current power xi(t) to xi(t) − s. Zero bids are placed
if increase or reduction of power violates the generator
constraint equation (3). Then, each node i sends its own
bid πi(t) (bid π) and µi(t) (bid µ) to its neighbours. The
node who has the lowest value for πi(t) (πi(t) > 0) wins
the bid π and the node who has the highest value for µi(t)
(µi(t) > 0) wins the bid µ. Hence, the winner bidder i is
the node who can generate extra s amount of power with
the lowest cost. On the contrary, the winner bidder j is the
node who can save maximum amount cost with producing
less s amount of power. Finally, the winner bidders i and
j calculate δ = µj(t) − πi(t). If δ > 0, the exchange of s
amount of power will lead to a save of amount δ. Therefore,
if δ > 0, the update rule for i and j:

xi(t+ 1) = xi(t) + s

xj(t+ 1) = xj(t)− s

The algorithm iterates until no exchange of s amount of
power between two nodes will lead us to a low-cost solution.
Furthermore, the demand constraint (Eq (2)) is maintained
as D =

∑n
i=1 xi(t) at any time t instance.

2.2. Attack Sketch: Privacy-sensitive Data Leakage

In our attacker model, we consider a non-colluding semi-
honest attacker A in the network. If the cost function is
quadratic convex, A can trivially find the value of aj just

from one iteration. The attacker A gets the value of πj(t)
and µj(t) at t = 0:

πj(0) = Cj(xj(0) + s)− Cj(xj(0))

= 2ajxj(0)s+ ajs
2 + bjs

(5)

µj(0) = Cj(xj(0))− Cj(xj(0)− s)
= 2ajxj(0)s− ajs2 + bjs

(6)

Now, subtracting the equations (5) and (6):

2ajs
2 = πj(0)− µj(0))

=⇒ aj =
πj(0)− µj(0)

2s2

Hence, aj can be found as s is public and known to
the attacker. Similarly, the value of bj can be revealed with
few rounds of iteration. Furthermore, if the cost function is
non-convex, we can solve a system of non-linear equations
received during several rounds to find the cost function
parameters (e.g. with a numerical solver).

3. Discussion and Future Work

The security model of a private protocol for EDP fol-
lows the ideal-real world paradigm [3]. Informally, an EDP
protocol is secure if an adversary can not learn more about
individual private inputs in the real world setting than in
the ideal world. We assume that all information shared is
fixed point values instead of real numbers, so we can con-
vert easily into integers. As any function can be computed
securely under a semi-honest model (information theoretic
setting) [1], we would like to use a circuit-based approach in
our protocol. Our work in progress includes the design and
implementation of an auction-based private EDP protocol
using different secure multiparty computation primitives like
garbled circuits and secret sharing.
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