
Poster: Loop Circuit Optimization with Bootstrapping

over Fully Homomorphic Encryption

Hiroki Sato, Akira Umayabara, Yu Ishimaki, Hayato Yamana

Waseda University

Tokyo, Japan

Email: {hsato, uma, yuishi, yamana}@yama.info.waseda.ac.jp

Abstract — Fully Homomorphic Encryption (FHE) enables us

to compute arbitrary circuits over encrypted data without

decryption. To evaluate a complex circuit, a time-consuming

operation called bootstrapping is required. Reducing the number

of bootstrapping operations leads directly to reducing the entire

computation time of the circuit. An optimization problem which

minimizes the number of bootstrapping operations is called

bootstrap problem, which is NP-complete. In previous work to

tackle the problem, objective circuits must be represented as a

directed acyclic graph. Thus, the previous methods cannot handle

loop-carried dependencies for the circuits containing any loop,

which results in no optimization over iterations. In this paper, we

propose a method to decide a near-optimal placement of

bootstrapping operations in a loop circuit by adopting loop

unrolling technique. Compared to a naïve method, our method

successfully reduced the number of bootstrapping operations per

loop iteration up to 50 percent for a toy circuit, and up to 63

percent for a nearest neighbor classification circuit.

Keywords—FHE, bootstrapping, loop unrolling

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) scheme is a public
key cryptography where we can perform arbitrary computation
over ciphertexts without decryption [1]. FHE makes it possible
to securely delegate computation and/or analysis on confidential
data to an untrusted third-party like cloud computing.

In 2009, Gentry first proposed the mechanism of FHE. After
that, many follow up works have appeared. All existing FHE
schemes have a same property; every ciphertext includes some
noise which grows with every arithmetic operation. To get a
correct decryption result, an operation called bootstrapping to
reset the noise is required. However, the bootstrapping
consumes huge computation time. Especially in a loop, huge
number of bootstrapping operations is indispensable. Given a
circuit to compute, minimizing the number of bootstrapping
operations directly results in reducing the entire computation
time. The minimization problem is called bootstrap problem.

In previous work to tackle the problem, researchers have
considered a circuit represented as a directed acyclic graph
(DAG) that cannot handle loop-carried dependencies for a loop
circuit, which results in no optimization over iterations. To
remove the restriction, we propose a new method adopting loop
unrolling. The main contribution of this paper is to show the
effectiveness of loop unrolling in the bootstrap problem.

II. BACKGROUND

A. Leveled Fully Homomorphic Encryption (leveled FHE)

In this paper, we focus only on leveled FHE. The following
description is a simplified model of leveled FHE. A parameter
level 𝐿 ∈ ℤ(> 0) is decided along with key generation, and each
ciphertext has a parameter noise-level ℓ. Just after the encryption,
ℓ = 𝐿 . The evaluation of XOR (or addition) gate to two
ciphertexts whose noise-levels are ℓ1 and ℓ2 yields a ciphertext
whose noise-level is min(ℓ1, ℓ2). The Evaluation of AND (or
multiplication) gate yields a ciphertext whose noise-level is
min(ℓ1, ℓ2) − 1. While a ciphertext keeps ℓ > 0, its decryption
is correct. When noise-level ℓ ≤ 0 , the correctness of the
decryption result is not guaranteed. By executing bootstrapping,
the noise-level of ciphertext is reset to 𝑁(> 0), so that we can
continue its computation over the ciphertext.

B. Bootstrap Problem

Since the bootstrapping is time-consuming, minimizing the
number of bootstrapping operations in a circuit directly results
in reducing the entire computation time. In previous work, the
bootstrap problem is proved to be NP-complete [2], and its
optimization result can be obtained by converting the problem
to integer liner programming (ILP) [3]. In the previous works, a
data-flow graph should be represented as a DAG, which does
not contain any loop. Thus, previous methods can optimize only
one iteration of a loop circuit, which results in the lack of
optimization over iterations.

III. BASELINE AND PROPOSED METHOD

As a baseline, we consider following two methods directly
adopting the previous work proposed by Paindavoine et al. [3].

• Optimal Method: A loop is unfolded completely to have its
whole DAG over iterations followed by adopting the
previous work [3]. Note that, it is impossible to unfold whole
iterations because we usually do not know the total iteration
number statically. Only to confirm the optimal placement of
bootstrapping operations, we consider this method.

• Naïve Method: The method of previous work [3] is applied
to one iteration of a loop, and bootstrapping operations are
additionally placed at the end of each iteration because it
becomes impossible to predict the required level without the
placement.

This work was supported by JST CREST Grant Number JPMJCR1503,

Japan.

We extend the Paindavoine’s method [3] to handle loops.
Here, we assume that a circuit satisfies the following two
constraints: 1) there are no loop-carried dependencies whose
distance is more than 1, and 2) there are no branches in the loop.
In these constraints, we propose a method to decide a near-
optimal placement of bootstrap operations. Our method also
keeps its graph size small to shorten the optimization time.

A. Loop Unrolling

Our method manages “loop-carried noise dependencies” by
adding the constraints to ILP which expresses data dependencies
among iterations. In addition, a given loop is unfolded a few
times. We will show from the experimental result that unfolding
only a few times is enough to get near-optimal result.

B. Level Parameter Selection

If an initial level is set high, the computation cost, such as
multiplication and bootstrapping, increases though the required
number of bootstrapping operations becomes small. It is not
simple to decide the best level, so that we estimate entire
computation time 𝑡𝑡𝑜𝑡𝑎𝑙 of formula (1) by varying level
parameters for choosing the best ones to shorten 𝑡𝑡𝑜𝑡𝑎𝑙. Here, 𝑡𝑏𝑠
denotes computation time of a bootstrapping operation, 𝑡𝑚𝑢𝑙 is
multiplication time, 𝑛𝑏𝑠 and 𝑛𝑚𝑢𝑙 denote required number of
bootstrapping operations per iteration and that of multiplication.

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑏𝑠 × 𝑛𝑏𝑠 + 𝑡𝑚𝑢𝑙 × 𝑛𝑚𝑢𝑙 (1)

IV. EXPERIMENTS AND DISCUSSION

We conducted two experiments to evaluate our method using
HElib[4]. First, we applied baseline and proposed methods for a
toy circuit shown in Fig.1. The result is shown in TABLE I and
TABLE II. Second, as a real circuit, we constructed a nearest
neighbor classification circuit and applied our method. The
result is shown in TABLE III and TABLE IV. As shown in the
tables, we varied the parameters to find the optimal ones.

The result shows that by unrolling just a few times, at most
8, our method outputs near-optimal number of bootstrapping
operations, i.e., only 1.0 ~ 1.2 times larger than the optimal. This
result shows that small number of loop unrolling is enough to
have a near-optimal solution.

V. CONCLUSION

In this paper, we proposed a new bootstrapping optimization
method over loop circuits and showed the effectiveness. Our
future work includes the optimization both for arbitrary circuits
including various kinds of data dependencies and for other
operations beyond bootstrapping like re-linearization.

REFERENCES

[1] C. Gentry, “A Fully Homomorphic Encryption Scheme”, Ph.D. Thesis,
Stanford University, 2009.

[2] T. Lepoint, P. Paillier, “On the Minimal Number of Bootstrappings in
Homomorphic Circuits”, Financial Cryptography and Data Security,
LNCS, vol. 7862, pp.189-200, 2013.

[3] M. Paindavoine, B. Vialla, “Minimizing the Number of Bootstrappings in
Fully Homomorphic Encryption”, Selected Areas in Cryptography, LNCS,
vol. 9566, pp. 25-43, 2015.

[4] HElib. http://shaih.github.io/HElib/index.html accessed in 2017-2-15.

TABLE I. NUMBER OF BOOTSTRAPS PER ITERATION (TOY CIRCUIT)

Parameters (𝐿, 𝑁) (18,7) (20,9) (22,11) (24,13) (26,15) (28,17)

(a) Optimal Method

(50 iterations)
0.92

0.82~

0.92a
0.68 0.60 0.52 0.44

(b) Naïve Method 2.00 2.00 2.00 2.00 2.00 2.00

(c) P
ro

p
o
sed

 M
eth

o
d

(#
 o

f iteratio
n
s to

 o
p
tim

ize
)

1 2.00 2.00 2.00 2.00 2.00 2.00

2 1.50 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 0.67 0.67

4 1.25 1.00 0.75 0.75 0.75 0.50

5 1.20 1.00 0.80 0.80 0.60 0.60

6 1.00 1.00 0.83 0.83 0.67 0.67

7 1.14 1.00 0.86 0.71 0.57 0.57

8 1.13 1.00 0.75 0.75 0.63 0.50

9 1.00 1.00 0.78 0.78 0.67 0.56

10 1.10 1.00 0.80 0.80 0.60 0.60

(c) / (a) 1.09
1.22~

1.09
1.10 1.18 1.10 1.14

(c) / (b) 0.50 0.50 0.38 0.36 0.29 0.25

a. Unable to get optimal solution because of memory shortage.

TABLE II. OPTIMIZATION RESULT (TOY CIRCUIT)

Parameters (𝐿, 𝑁) (18,7) (20,9) (22,11) (24,13) (26,15) (28,17)

Security [bit] 180.7 146.6 120.7 107.4 90.9 80.7

Multiplication Time [sec.] 0.143 0.162 0.158 0.165 0.168 0.191

Bootstrap Time [sec.] 77.27 82.89 85.00 86.29 86.50 90.38

Result of TABLE I.

[# of bootstrap / iter.]
1.00 1.00 0.75 0.71 0.57 0.50

Estimated Circuit-Computation-Time

[sec. / iter.]
78.13 83.86 64.70 62.26 50.31 46.34

TABLE III. NUMBER OF BOOTSTRAPS PER ITERATION (NN CIRCUIT)

Parameters (𝐿, 𝑁) (22,11) (24,13) (26,15) (28,17) (30,19)

(a) Optimal Method

(18 iterations)
1.11

1.06~

0.89
0.89 0.67 0.56

(b) Naïve Method 2.00 2.00 2.00 2.00 2.00

(c) P
ro

p
o

sed
 M

eth
o

d

(#
 o

f iteratio
n

s

to
 o

p
tim

ize
)

1 2.00 2.00 2.00 2.00 2.00

2 1.50 1.5 1.00 1.00 1.00

3 1.33 1.33 1.00 1.00 1.00

4 1.25 1.25 1.00 0.75 0.75

5 1.40 1.20 1.00 0.80 0.80

6 1.33 1.17 1.00 0.83 0.67

7 1.29 1.14 1.00 0.86 0.71

8 1.25 1.13 1.00 0.75 0.75

(c) / (a) 1.13
1.27~

1.07
1.12 1.12 1.20

(c) / (b) 0.63 0.57 0.50 0.38 0.34

TABLE IV. OPTIMIZATION RESULT (NN CIRCUIT)

Parameters (𝐿, 𝑁) (22, 11) (24,13) (26, 15) (28,17) (30,19)

Security [bit] 120.7 107.4 90.9 80.7 65.4

Multiplication Time [sec.] 0.158 0.165 0.168 0.191 0.190

Bootstrap Time [sec.] 85.00 86.29 86.50 90.38 93.25

Result of TABLE I.

[# of bootstrap / iter.]
1.25 1.13 1.00 0.75 0.67

Estimated Circuit-Computation-Time

[sec. / iter.]
107.99 99.32 88.35 69.89 64.57

Fig. 1. A Toy Circuit (left) and its Unrolled Circuit Example (right)

