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Abstract — Fully Homomorphic Encryption (FHE) enables us 

to compute arbitrary circuits over encrypted data without 

decryption. To evaluate a complex circuit, a time-consuming 

operation called bootstrapping is required. Reducing the number 

of bootstrapping operations leads directly to reducing the entire 

computation time of the circuit. An optimization problem which 

minimizes the number of bootstrapping operations is called 

bootstrap problem, which is NP-complete. In previous work to 

tackle the problem, objective circuits must be represented as a 

directed acyclic graph. Thus, the previous methods cannot handle 

loop-carried dependencies for the circuits containing any loop, 

which results in no optimization over iterations. In this paper, we 

propose a method to decide a near-optimal placement of 

bootstrapping operations in a loop circuit by adopting loop 

unrolling technique. Compared to a naïve method, our method 

successfully reduced the number of bootstrapping operations per 

loop iteration up to 50 percent for a toy circuit, and up to 63 

percent for a nearest neighbor classification circuit. 
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I.  INTRODUCTION 

Fully Homomorphic Encryption (FHE) scheme is a public 
key cryptography where we can perform arbitrary computation 
over ciphertexts without decryption [1]. FHE makes it possible 
to securely delegate computation and/or analysis on confidential 
data to an untrusted third-party like cloud computing. 

In 2009, Gentry first proposed the mechanism of FHE. After 
that, many follow up works have appeared. All existing FHE 
schemes have a same property; every ciphertext includes some 
noise which grows with every arithmetic operation. To get a 
correct decryption result, an operation called bootstrapping to 
reset the noise is required. However, the bootstrapping 
consumes huge computation time. Especially in a loop, huge 
number of bootstrapping operations is indispensable. Given a 
circuit to compute, minimizing the number of bootstrapping 
operations directly results in reducing the entire computation 
time. The minimization problem is called bootstrap problem. 

In previous work to tackle the problem, researchers have 
considered a circuit represented as a directed acyclic graph 
(DAG) that cannot handle loop-carried dependencies for a loop 
circuit, which results in no optimization over iterations. To 
remove the restriction, we propose a new method adopting loop 
unrolling. The main contribution of this paper is to show the 
effectiveness of loop unrolling in the bootstrap problem. 

II. BACKGROUND 

A. Leveled Fully Homomorphic Encryption (leveled FHE) 

In this paper, we focus only on leveled FHE. The following 
description is a simplified model of leveled FHE. A parameter 
level 𝐿 ∈ ℤ(> 0) is decided along with key generation, and each 
ciphertext has a parameter noise-level ℓ. Just after the encryption, 
ℓ = 𝐿 . The evaluation of XOR (or addition) gate to two 
ciphertexts whose noise-levels are ℓ1 and ℓ2 yields a ciphertext 
whose noise-level is min(ℓ1, ℓ2). The Evaluation of AND (or 
multiplication) gate yields a ciphertext whose noise-level is 
min(ℓ1, ℓ2) − 1. While a ciphertext keeps ℓ > 0, its decryption 
is correct. When noise-level ℓ ≤ 0 , the correctness of the 
decryption result is not guaranteed. By executing bootstrapping, 
the noise-level of ciphertext is reset to 𝑁(> 0), so that we can 
continue its computation over the ciphertext. 

B. Bootstrap Problem 

Since the bootstrapping is time-consuming, minimizing the 
number of bootstrapping operations in a circuit directly results 
in reducing the entire computation time. In previous work, the 
bootstrap problem is proved to be NP-complete [2], and its 
optimization result can be obtained by converting the problem 
to integer liner programming (ILP) [3]. In the previous works, a 
data-flow graph should be represented as a DAG, which does 
not contain any loop. Thus, previous methods can optimize only 
one iteration of a loop circuit, which results in the lack of 
optimization over iterations. 

III. BASELINE AND PROPOSED METHOD 

As a baseline, we consider following two methods directly 
adopting the previous work proposed by Paindavoine et al. [3]. 

• Optimal Method: A loop is unfolded completely to have its 
whole DAG over iterations followed by adopting the 
previous work [3]. Note that, it is impossible to unfold whole 
iterations because we usually do not know the total iteration 
number statically. Only to confirm the optimal placement of 
bootstrapping operations, we consider this method. 

• Naïve Method: The method of previous work [3] is applied 
to one iteration of a loop, and bootstrapping operations are 
additionally placed at the end of each iteration because it 
becomes impossible to predict the required level without the 
placement. 
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We extend the Paindavoine’s method [3] to handle loops. 
Here, we assume that a circuit satisfies the following two 
constraints: 1) there are no loop-carried dependencies whose 
distance is more than 1, and 2) there are no branches in the loop. 
In these constraints, we propose a method to decide a near-
optimal placement of bootstrap operations. Our method also 
keeps its graph size small to shorten the optimization time. 

A. Loop Unrolling 

Our method manages “loop-carried noise dependencies” by 
adding the constraints to ILP which expresses data dependencies 
among iterations. In addition, a given loop is unfolded a few 
times. We will show from the experimental result that unfolding 
only a few times is enough to get near-optimal result. 

B. Level Parameter Selection 

If an initial level is set high, the computation cost, such as 
multiplication and bootstrapping, increases though the required 
number of bootstrapping operations becomes small. It is not 
simple to decide the best level, so that we estimate entire 
computation time 𝑡𝑡𝑜𝑡𝑎𝑙  of formula (1) by varying level 
parameters for choosing the best ones to shorten 𝑡𝑡𝑜𝑡𝑎𝑙. Here, 𝑡𝑏𝑠 
denotes computation time of a bootstrapping operation, 𝑡𝑚𝑢𝑙 is 
multiplication time, 𝑛𝑏𝑠  and  𝑛𝑚𝑢𝑙  denote required number of 
bootstrapping operations per iteration and that of multiplication. 

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑏𝑠 × 𝑛𝑏𝑠 + 𝑡𝑚𝑢𝑙  × 𝑛𝑚𝑢𝑙              (1) 

IV. EXPERIMENTS AND DISCUSSION 

We conducted two experiments to evaluate our method using 
HElib[4]. First, we applied baseline and proposed methods for a 
toy circuit shown in Fig.1. The result is shown in TABLE I and 
TABLE II. Second, as a real circuit, we constructed a nearest 
neighbor classification circuit and applied our method. The 
result is shown in TABLE III and TABLE IV. As shown in the 
tables, we varied the parameters to find the optimal ones. 

The result shows that by unrolling just a few times, at most 
8, our method outputs near-optimal number of bootstrapping 
operations, i.e., only 1.0 ~ 1.2 times larger than the optimal. This 
result shows that small number of loop unrolling is enough to 
have a near-optimal solution. 

V. CONCLUSION 

In this paper, we proposed a new bootstrapping optimization 
method over loop circuits and showed the effectiveness. Our 
future work includes the optimization both for arbitrary circuits 
including various kinds of data dependencies and for other 
operations beyond bootstrapping like re-linearization. 
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TABLE I.  NUMBER OF BOOTSTRAPS PER ITERATION (TOY CIRCUIT) 

Parameters (𝐿, 𝑁) (18,7) (20,9) (22,11) (24,13) (26,15) (28,17) 

(a) Optimal Method 

(50 iterations) 
0.92 

0.82~ 

0.92a 
0.68 0.60 0.52 0.44 

(b) Naïve Method 2.00 2.00 2.00 2.00 2.00 2.00 

(c) P
ro

p
o
sed

 M
eth

o
d

 

(#
 o

f iteratio
n
s to

 o
p
tim

ize
) 

1 2.00 2.00 2.00 2.00 2.00 2.00 

2 1.50 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 0.67 0.67 

4 1.25 1.00 0.75 0.75 0.75 0.50 

5 1.20 1.00 0.80 0.80 0.60 0.60 

6 1.00 1.00 0.83 0.83 0.67 0.67 

7 1.14 1.00 0.86 0.71 0.57 0.57 

8 1.13 1.00 0.75 0.75 0.63 0.50 

9 1.00 1.00 0.78 0.78 0.67 0.56 

10 1.10 1.00 0.80 0.80 0.60 0.60 

(c) / (a) 1.09 
1.22~ 

1.09 
1.10 1.18 1.10 1.14 

(c) / (b) 0.50 0.50 0.38 0.36 0.29 0.25 

a. Unable to get optimal solution because of memory shortage. 

TABLE II.  OPTIMIZATION RESULT (TOY CIRCUIT) 

Parameters (𝐿, 𝑁) (18,7) (20,9) (22,11) (24,13) (26,15) (28,17) 

Security [bit] 180.7 146.6 120.7 107.4 90.9 80.7 

Multiplication Time [sec.] 0.143 0.162 0.158 0.165 0.168 0.191 

Bootstrap Time [sec.] 77.27 82.89 85.00 86.29 86.50 90.38 

Result of TABLE I.  

[# of bootstrap / iter.] 
1.00 1.00 0.75 0.71 0.57 0.50 

Estimated Circuit-Computation-Time 

[sec. / iter.] 
78.13  83.86  64.70  62.26  50.31  46.34  

TABLE III.  NUMBER OF BOOTSTRAPS PER ITERATION (NN CIRCUIT) 

Parameters (𝐿, 𝑁) (22,11) (24,13) (26,15) (28,17) (30,19) 

(a) Optimal Method 

(18 iterations) 
1.11 

1.06~ 

0.89 
0.89 0.67 0.56 

(b) Naïve Method 2.00 2.00 2.00 2.00 2.00 

(c) P
ro

p
o

sed
 M

eth
o

d
 

(#
 o

f iteratio
n

s  

to
 o

p
tim

ize
) 

1 2.00 2.00 2.00 2.00 2.00 

2 1.50 1.5 1.00 1.00 1.00 

3 1.33 1.33 1.00 1.00 1.00 

4 1.25 1.25 1.00 0.75 0.75 

5 1.40 1.20 1.00 0.80 0.80 

6 1.33 1.17 1.00 0.83 0.67 

7 1.29 1.14 1.00 0.86 0.71 

8 1.25 1.13 1.00 0.75 0.75 

(c) / (a) 1.13 
1.27~ 

1.07 
1.12 1.12 1.20 

(c) / (b) 0.63 0.57 0.50 0.38 0.34 

TABLE IV.  OPTIMIZATION RESULT (NN CIRCUIT) 

Parameters (𝐿, 𝑁) (22, 11) (24,13) (26, 15) (28,17) (30,19) 

Security [bit] 120.7 107.4 90.9 80.7 65.4 

Multiplication Time [sec.] 0.158 0.165 0.168 0.191 0.190 

Bootstrap Time [sec.] 85.00 86.29 86.50 90.38 93.25 

Result of  TABLE I.  

[# of bootstrap / iter.] 
1.25 1.13 1.00 0.75 0.67 

Estimated Circuit-Computation-Time 

[sec. / iter.] 
107.99  99.32  88.35  69.89  64.57  

        

Fig. 1. A Toy Circuit (left) and its Unrolled Circuit Example (right) 


