
POSTER: When Laziness Snaps Back
The Impact of Code Generators on App (In)Security

Yasemin Acar1, Michael Backes1,2,
Sascha Fahl1, Christian Stransky1

CISPA, Saarland University1

MPI-SWS2

{acar,backes,fahl,stransky}@cs.uni-saarland.de

ABSTRACT
The Android ecosystem suffers from many vulnerabilities,
which, due to its popularity, affect millions of users. Re-
search has identified many of these problems and, among
other approaches, suggested to better educate developers
and nudge them to make safe decisions. Developers often
employ third party libraries, or even application generators
or HTML-to-Android-app frameworks to lighten their cod-
ing workload. We identified the prevalence of broken TLS
as well as dangerous system permission requests. We also
analyzed the security level of access control employed when
using activities, services, receivers and providers. Our anal-
ysis highlights differences in the (in)security of custom code
vs. generated code, and we suggest to specifically target the
security education of code providers to make Android more
secure.

1. INTRODUCTION
Due to its high market share and open source character,
the Android ecosystem is a highly researched area: Over
the last six years, security problems of the Android OS and
third party applications developed for the Android ecosys-
tem have been intensely researched by the security commu-
nity [3, 2, 1, 4, 5]. Previous research unveiled that many
third party app developers do not follow least privilege by
over-requesting permissions [4], that developers have prob-
lems to securely employ Android’s TLS [3, 5] and crypto
API [2] or that developers have problems to securely make
use of Android’s inter process communication features [1]. A
huge number of apps and therefore users are affected by this
misuse of the Android API. As of yet, only insufficient coun-
termeasures have been deployed to tackle these problems.
Research often states that developers need better education
and support, that programming interfaces need to be sim-
plified and that the Android operating system needs to me
modified. Implicitly, it is assumed that the number of devel-
opers that require support roughly scales with the number
of apps affected by security issues. However, as the appi-

fication paradigm of the last years has generated the need
for (un)skilled (web) developers to transfer their services to
Android, the need to quickly produce Android code is often
supported by the use of third party libraries, professional
application generators or easy-to-use HTML-to-native-code
application frameworks. While this trend towards mass pro-
duction of Android apps is a security threat in itself – as one
broken framework, library or generator can break the secu-
rity of a huge number of apps and affect millions of users
at once - it also offers a chance: A move to more secure
paradigms by only a few service providers can go a long way
to make the whole Android ecosystem more secure, as shown
by TLS certificate validation (cf. Section 4.1). In this work,
we statically analyze a corpus of 1,005,894 Android apps:
We investigate which apps were written by distinct develop-
ers versus which were produced by frameworks/generators
and correlate these with the occurrence of selected security
threats in the apps’ code. We find that generated apps are
more likely to violate security best practices as well as to
break TLS certificate validation. However, we did find app
generators for which TLS certificate validation was correct
for every app. We understand this as an oppurtunity to fix
huge numbers of insecure apps by contacting and educating
only a few app generator providers.

2. BACKGROUND
2.1 Android Security Best Practices
The official Android developer API documentation 1 pro-
vides a list of security best practices, including suggestions
like using HTTPS over HTTP whenever possible, not re-
questing more permission than strictly necessary, not stor-
ing sensitive data on external storage, sanitizing user input,
making use of secure cryptographic features only, appropri-
ately protecting inter component communication, not dy-
namically loading code from outside an APK file and using
the Android SDK whenever possible instead of the NDK and
using native code.

2.2 Application Generators
Instead of writing a mobile application from scratch, de-
velopers can choose to use a service provider that allows
to automatically generate (large parts) of a web or native
app. Those app generators service providers oftentimes are
websites, standalone tools or programming frameworks that
allow developers to produce new apps with minimal effort.

1http://developer.android.com

http://developer.android.com


It is common to write HTML/JavaScript code and then let
the generator produce apps for multiple platforms such as
Android, iOS and Windows Mobile. A popular framework
that works like this is Apache Cordova2. The most pop-
ular application generators we could identify in our set of
Android applications are: andromo 3, Tobit4 and conduit5.

2.3 Insecure API Usages
Previous work demonstrated that many developers fail to
properly implement security related Android APIs. Fahl et
al. [3] statically analyzed Android apps’ code and found that
many of the apps in their dataset used broken TLS certifi-
cate verification. Egele et al. [2] confirmed similar findings
for Android’s cryptographic APIs. Porter-Felt et al. showed
that developers often over-request permissions [4]. Poeplau
et al. [5] showed that loading dynamic code is often imple-
mented in an insecure way. Chin et al.[1] found that Android
app developers struggle to properly protect inter component
communication.

3. METHODOLOGY
We downloaded 1,005,894 free apps from Google Play in
November 2014 and used androguard 6 to decompile the
whole app corpus; we generated callgraphs for all apps and
collected further information we used for the later analyses:

• Callgraphs allow us to investigate which Android APIs
and third party libraries are called within an app.
• Manifest.xml files include information such as the num-

ber of requested permissions and information about
content providers, intents and services.
• Packagenames uniquely identify Android apps in Goo-

gle Play (e. g. comk̇atanaḟacebook identifies the Face-
book app) and prevent name collisions of apps on an
Android device.

3.1 App Classification
We used the above criteria to decide whether an app was
built using one of the app generators (cf. Section 2.2), made
use of one or more of the popular third party libraries or if
the apps were originally written by an app developer.

Packagenames: By analyzing packagename patterns in our
corpus, we could identify 28 app generator frameworks, e. g.
all apps that were generated using the conduit 7 app gener-
ator have the packagename pattern com.conduit.*. 38,467
apps could be assigned to an app generator based on their
packagenames. Table 1 illustrates the most popular packa-
gename patterns.

Callgraph Data: Using specific namespaces in apps’ call
graphs, we could identify 513,793 apps that used third party
code: Using callgraph data, we found 11 app generators
corresponding to 50241 apps and 51 libraries/frameworks/S-
DKs corresponding to 463,552 apps. Table 2 shows the most
popular namespaces corresponding to third party libraries.
Identification using the developer ID is also possible. Table
3 gives an overview of the most prevalent developer IDs.
2Cf. https://cordova.apache.org/
3Cf. http://www.andromo.com/
4Cf. http://en.tobit.com/
5Cf. http://www.conduit.com/
6Cf. https://github.com/androguard/androguard
7http://www.conduit.com/

Packagename App Count

com.Tobit.* 13,501
{com|net}.andromo.dev* 11,450
com.conduit.* 6,875
com.appsbar.* 1,122
com.phonegap.* 1,050
com.crowdcompass.* 965
com.mobincube.android.* 902
{ru|com}.loyaltyplant.partner.* 468
com.quickmobile.* 452
com.appypie.* 392

Table 1: The 10 most popular packagename patterns.

Library Prefix App Count

com.google 470,648
com.facebook 118,864
com.actionbarsherlock 77,377
org.slf4j 74,809
com.millennialmedia 61,465
com.inmobi 58,897
com.squareup 51,708
twitter4j 48,860
com.flurry 45,602
com.viewpagerindicator 40,594

Table 2: The 10 most popular third party code namespaces
we found in our app corpus.

Developer ID App Count

Tobit Software 13,501
Brainpub for Theme 1,377
Subsplash Consulting 1,278
Lisbon Labs 1,245
GPSmyCity.com, Inc. 876
Camp Mobile for dodol theme 825
Shopgate GmbH 813
iConnect 786
Skoolbag 750
Thanakorn 741

Table 3: The 10 most popular developer IDs.

3.2 Against Android Security Best Practices
We measured the compliance to several Android security
best practices as recommended by Google (cf. Section 2.1):

3.2.1 TLS Certificate Validation
For apps that used TLS in an effort to establish secure
network connection, we used the MalloDroid tool8 to an-
alyze whether correct X.509 certificate verification was im-
plemented. We classify apps as breaking TLS if they

• Implement a broken TrustManager for TLS connec-
tions.

• Overwrite the OnReceivedSSLError method for a We-

bView.

• Use a HostnameVerifier that does not properly check
a certificate’s common name.

8https://github.com/sfahl/mallodroid

https://cordova.apache.org/
http://www.andromo.com/
http://en.tobit.com/
http://www.conduit.com/
https://github.com/androguard/androguard
http://www.conduit.com/
https://github.com/sfahl/mallodroid


3.2.2 Manifest File
We analyzed the Manifest files of all apps to see if they follow
best practices. We identified apps that

• Request dangerous system permissions, e.g.
android.permission.SEND_SMS.
• Define dangerous permissions, e.g. own permission

with protectionLevel=“dangerous”.
• Request SMS or external storage permissions.
• Export unprotected activities, receivers, services or

providers.

4. RESULTS
Overall, we analyzed 1,005,894 free Android apps from Google
Play and checked the security properties described in Sec-
tion 3.2.

4.1 TLS Certificate Verification
We found 167,724 apps that implemented insecure X.509
certificate verification via a custom TrustManager. Of the
167,724 apps that implemented a broken TrustManager, 37,322
apps were built by app generators. Hence, 61.07% of all app
generator apps include broken certificate verification, while
15.17% of all custom apps implement broken certificate ver-
ification. Table 4 shows the prevalence of broken TLS cer-
tificate validation for popular app generators.

App Generator Broken Certificate Verification

Tobit Chayns 99.99%
Como 99.87%
SeattleClouds 98.74%
Appy Pie 98.35%
Good Barber 97.88%
Quickmobile 69.15%
CrowdCompass 51.02%
Andromo 13.83%
Apps Bar 0.00%
Mobincube 0.00%

Table 4: Implementation of broken certificate verification in
apps for the most popular app generators.

These results illustrate that broken TLS certificate verifi-
cation is more prevalent in apps built by app generators.
However, while some app generators include broken certifi-
cate verification into almost all of their apps, other app gen-
erators – although offering HTTPS connections – do not
include broken certificate verification code at all. Hence,
while apps produced by app generators are more likely to
be vulnerable to Man-In-The-Middle attacks, app genera-
tors have the chance to protect all of their clients’ HTTPS
connections properly in one go.

4.2 Manifest File
We analyzed the content of all Manifest files (cf. Section
3.2.2) and present the results in Table 5. Almost all gener-
ated apps request dangerous permissions (99.34%), which
could indicate over-requesting of permissions. Across all
apps, 90.27% apps request at least one dangerous permis-
sion. 84.90% of the generated apps request access to external
storage, as compared to 52.28% across all apps. Depending
on what is stored to the external storage, this could lead
to leak of private information. Generated apps have a high
amount of services (83.14%) that are implicitly exported via

Vulnerability Apps App-Gens Apps

Req. Dangerous Permission 90.27% 99.34%
Def. Dangerous Permission 0.06% 0.00%
Req. External Storage 52,28% 84.90%
Req. SMS permission 4.11% <0.01%
Expl. Exported Activities 6.10% 35.46%
Expl. Exported Services 6.90% 0.19%
Expl. Exported Receivers 3.00% 21.97%
Impl. Exported Activities 23.42% 30.00%
Impl. Exported Services 34.34% 83.14%
Impl. Exported Receivers 6.20% 1.26%
Exported Providers 7.30% 63.12%

Table 5: Manifest file analysis results. The activities, ser-
vices, receivers and providers in this table are unprotected
(insecure).

intent-filters, as compared to 0.19% which are exported with
the exported=true attribute. In general, compared to the
corpus of all apps, generated apps are more prone to leaving
activities, services, receivers and providers unprotected by
not requiring permissions.

5. LIMITATIONS AND FUTURE WORK
In this preliminary work, we might under-report the use
of frameworks and app generators, as we only classified the
apps according to packagenames, name spaces and developer
IDs. In the future, we plan to make use of further charac-
teristic criteria for the classification, such as the signing cer-
tificates and the name spaces in the AndroidManifest.xml.
For the comparison of security relevant behaviours, we only
considered a small fraction of known vulnerabilities and vi-
olations of the Android security best practices. We plan to
take more known vulnerabilities, not only limited to the mis-
use of TLS certificate validation, as well as further security
best practices into account, such as using mis-using cryp-
tographic libraries, or over-requesting permissions that are
not used according to the call graphs. Eventually, we plan
to conduct interviews with app generator providers and app
developers to better understand the reasons that lead to in-
secure code (or the motivation for writing secure code).

6. REFERENCES
[1] Chin, E., Felt, A. P., Greenwood, K., and

Wagner, D. Analyzing inter-application
communication in android. MobiSys ’11, ACM.

[2] Egele, M., Brumley, D., Fratantonio, Y., and
Kruegel, C. An empirical study of cryptographic
misuse in android applications. CCS ’13, ACM.

[3] Fahl, S., Harbach, M., Muders, T.,
Baumgärtner, L., Freisleben, B., and Smith, M.
Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security. CCS’12.

[4] Felt, A. P., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions Demystified.
CCS’11, ACM.

[5] Poeplau, S., Fratantonio, Y., Bianchi, A.,
Kruegel, C., and Vigna, G. Execute this! analyzing
unsafe and malicious dynamic code loading in android
applications. NDSS’14.


	Introduction
	Background
	Android Security Best Practices
	Application Generators
	Insecure API Usages

	Methodology
	App Classification
	Against Android Security Best Practices
	TLS Certificate Validation
	Manifest File


	Results
	TLS Certificate Verification
	Manifest File

	Limitations and Future Work
	References

