
Poster: ARTist: The Android Runtime Instrumentation and Security Toolkit

Michael Backes∗, Sven Bugiel†, Oliver Schranz†, Philipp von Styp-Rekowsky† and Sebastian Weisgerber†
∗CISPA, Saarland University, MPI-SWS

backes@cs.uni-saarland.de
†CISPA, Saarland University

{bugiel,schranz,styp-rekowsky,weisgerber}@cs.uni-saarland.de

Abstract—We present ARTist, a compiler-based application
instrumentation solution for Android. ARTist is based on the new
ART runtime and the on-device dex2oat compiler of Android,
which replaced the interpreter-based managed runtime (DVM)
from Android version 5 onwards. Since dex2oat is yet uncharted,
our approach required first and foremost a thorough study
of the compiler suite’s internals and in particular of the new
default compiler backend Optimizing. Moreover, we exemplify
the viability of ARTist by re-instantiating intra-application taint
tracking solutions, which hitherto depend on the now abandoned
DVM, on Android 6. Our results in particular provide compelling
arguments for prefering compiler-based instrumentation over
alternative bytecode or binary rewriting approaches.

I. INTRODUCTION

Google’s Android OS has become a popular subject of the
security research community over the last few years. Among
the different directions of research on improving Android’s
security, a dedicated line of work has successfully investigated
how instrumentation of the interpreter (i.e., Dalvik virtual ma-
chine) can be leveraged for security purposes. This line of work
comprises seminal works such as TaintDroid [1] for analyzing
privacy relevant data flows within applications, AppFence [2]
for protecting the end-users’ privacy, or Moses [3] for domain
isolation, just to name a few.

However, with the release of Android 5 Lollipop, Google
made a large technological leap by replacing the interpreter-
based runtime with an on-device, ahead-of-time compilation
of apps to platform specific bytecode that is executed in the
new Android runtime (short ART). While this leap did not
affect the app developers, it broke legacy compliance of all
of the previously mentioned security solutions that rely on
instrumentation of the DVM and it restricts them to Android
versions prior to Lollipop. In fact, it has left the security
research community with two choices for carrying on work
that relies on instrumented runtimes: resorting to binary or
bytecode rewriting techniques [4][5] or adapting to the novel
but uncharted on-device compiler infrastructure.

Our contributions. In this work, we present a compiler-
based solution that is not only able to re-instantiate previous
solutions such as dynamic, intra-application taint tracking [1],
but, moreover, to provide a more robust, reliable, and inte-
grated application-layer instrumentation approach than previ-
ously possible. Concretely, we make the following contribu-
tions.

Study of the ART compiler suite. Since the novel ART
compiler suite, dex2oat, is still uncharted, our solution required
first and foremost a thorough study of the newly introduced
dex2oat compiler. We provide, to the best of our knowledge,

the first in-depth, comprehensive study of the internals of
ART’s compiler suite in the form of a companioning technical
report [?]. In particular, we deep-dive into its most recent
backend called Optimizing that became the default with An-
droid 6 Marshmallow. Those new insights not only allow us
to implement a compiler-based solution, but also form expert
knowledge that facilitates independent research on the topic.

Compiler-based app instrumentation. We design and im-
plement a novel approach, called ARTist (ART Instrumentation
and Security Toolbox), for application instrumentation based
on an extended version of ART’s compiler frontend dex2oat.
Our system leverages the compiler’s rich optimization frame-
work to safely optimize the newly instrumented application
code. The instrumentation process is guided by static analysis
that utilizes the compiler’s intermediate representation of the
app’s code as well as its static program information in order
to efficiently determine instrumentation targets. A particular
benefit of our solution, in contrast to alternative application
layer solutions (i.e., bytecode or binary rewriting), is that the
application signature is unchanged and therefore Android’s
signature-based same origin model and its central update utility
remain intact. To demonstrate the benefits of a solution such
as our ARTist, we conduct a case study by instantiating a
TaintDroid-inspired [1] dynamic intra-application taint track-
ing solution using ARTist. Our results provide compelling
arguments for preferring compiler-based instrumentation over
alternative bytecode or binary rewriting approaches.

II. THE ANDROID RUNTIME INSTRUMENTATION AND
SECURITY TOOLKIT

The architecture of ARTist consists of two major compo-
nents: a security-instrumented compiler (sec-compiler) and an
app to deploy the compiler (deployment app). The sec-compiler
is our implementation of a compile-time instrumentation tool
that is based on the dex2oat compiler. The latter is a regular
Android application that ships, deploys, and manages the sec-
compiler.

A. Security-Instrumented Compiler

The general concept of security-instrumented compilers
is not restricted in its modifications of the compiler. Given
dex2oat’s modular design, there are immediately multiple
possibilities apparent where app modifying code could be
placed. For instance, dex2oat’s design would easily allow
porting bytecode and binary rewriting approaches (InstrDEX

& InstrBIN ) into the compiler infrastructure (cf. Figure 1).
Of the different choices, ARTist’s sec-compiler is concretely
designed to operate on the intermediate representation of



APK
dex code

OAT
Write ELF

dex2oat
Verify

Optimizing Backend

Compile Install

dex
code IR native

code
Transform Code

Generation

Input Output

Optimization

dex
code*InstrDEX

IR*InstrOPT

native
code*InstrBIN

APK
dex code*

OAT*
dex code

InstrAPK InstrOAT

dex code

Fig. 1. The code instrumentation points before, during, and after the
compilation for different representations of the app code. Instrumented code
is depicted in black boxes.

dex2oat’s Optimizing backend (InstrOPT ), where the exist-
ing optimization infrastructure and static code information
in the Optimizing IR benefit an efficient and precise code
modification. More precisely, our app instrumentation code is
realized as an Optimization and therefore modularly integrated
into the optimization workflow. Consequently, our security
instrumentation logic has full control over the ordering and
execution of optimizations, which opens up the opportunity to
optimize the already instrumented code by creating or applying
compatible optimizations that improve the performance of the
security code. Generally, using the Optimization interface one
can extend the compiler with custom functionality (Modules)
that is decoupled from dex2oat’s code base. In addition, our
integrated solution implicitly takes advantage of the robustness
of Optimizing’s code generators, which are well-tested, con-
stantly improved, and in productive use on every stock Android
phone running version 6+.

B. Compiler Deployment App

Responsibility of the deployment app is to deploy the
sec-compiler at application layer in addition to the system’s
dex2oat binary. Using deployment app, one can create security-
instrumented versions of installed applications by re-compiling
the apps’ bytecode with sec-compiler and replacing the oat
files stored on filesystem. To make the Android runtime
agnostic to this instrumentation, two particular challenges had
to be overcome. First, Android has mechanisms in place to
verify that oat files correspond to their respective apps and
that the paths of the oat files are correct. Our implementation
solves this challenge by rewriting paths and checksums to
match those that the system dex2oat would have generated.
Second, the oat files are by default stored at and loaded from
a protected location to which 3rd party apps have no access.
A naı̈ve solution to this problem would be to require extended
privileges for our deployment app (e.g., a dedicated SELinux
type or root on security-relaxed after-market ROMs). Alter-
natively, app virtualization solutions such as Boxify[6] and
NJAS[7] can be applied to solve this problem without requiring
extended privileges. In either case, the Android default runtime
will load the instrumented oat file while remaining agnostic
to the fact that it was replaced by our customized version.

While the instrumentation with ARTist already provides
powerful tools to modify the application, most security so-
lutions require additional custom code within the app (e.g.,
a policy decision point). To facilitate adding custom code to
an instrumented app, deployment app has a preprocessing step
that combines the app’s original bytecode with the additional

code before the compilation. During compilation, connections
between original and new code are built in form of invocations
of the added code’s methods.

For the concrete deployment, we opted for utilizing the
default AOSP dex2oat binary and leveraging its modularity to
ship our extensions as separate libraries to the compiler suite
instead of shipping deployment app with a statically linked
dex2oat binary that includes our ARTist extensions. We use
the LD LIBRARY PATH environment variable to ensure that
our dex2oat loads and dynamically links our ARTist libraries,
such as libart-compiler.so, from the assets directory of the
deployment app.

III. INTRA-APP TAINT TRACKING CASE STUDY

We study the viability of our ARTist approach through a
case study by re-instantiating intra-application taint tracking,
as demonstrated by the seminal TaintDroid [1] work, in the
form of a new ARTist Module, called TaintARTist. In contrast,
to the original TaintDroid work, which was based on instru-
menting the now abandoned Dalvik virtual machine (DVM),
our approach abstains from instrumenting the dex execution
environment and instead builds on inlining taint tracking logic
into the application code base at compilation time.

We first exploit the processing features of the dex2oat com-
piler to detect the data flow sources and sinks and afterwards
use its static analysis features to overapproximate the relevant
data flows that have to be instrumented. Second, we make use
of our data flow analysis to only inline taint tracking code
where critical flows can happen at runtime. The result is a
intra-application taint tracking prototype based on ARTist that
runs solely on the application layer for Android versions 6+.

REFERENCES

[1] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. 9th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010.

[2] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect
data from imperious applications,” in Proc. 18th ACM Conference on
Computer and Communication Security (CCS’11). ACM, 2011.

[3] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “MOSES: supporting
operation modes on smartphones,” in Proc. 17th ACM Symposium on
Access Control Models and Technologies (SACMAT’12). ACM, 2012.

[4] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android
Applications,” in Proc. 2012 Mobile Security Technologies Workshop
(MoST’12). IEEE Computer Society, 2012.

[5] H. Hao, V. Singh, and W. Du, “On the Effectiveness of API-level
Access Control Using Bytecode Rewriting in Android,” in Proc. 8th
ACM Symposium on Information, Computer and Communication Security
(ASIACCS’13). ACM, 2013.

[6] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android,”
in Proc. 24th USENIX Security Symposium (SEC’15). USENIX
Association, 2015.

[7] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sandboxing
unmodified applications in non-rooted devices running stock android,”
in Proc. 5th ACM CCS Workshop on Security and Privacy in Mobile
Devices (SPSM’15). ACM, 2015.


	Introduction
	The Android Runtime Instrumentation and Security Toolkit
	Security-Instrumented Compiler
	Compiler Deployment App

	Intra-App Taint Tracking Case Study
	References

