
Poster: On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis

Michael Backes∗, Sven Bugiel†,
Erik Derr†, Sebastian Weisgerber†
∗CISPA, Saarland University, MPI-SWS

†CISPA, Saarland University
{backes,bugiel,derr,weisgerber}@cs.uni-saarland.de

Patrick McDaniel‡, Damien Octeau§
‡Pennsylvania State University

mcdaniel@cse.psu.edu
§Pennsylvania State University & University of Wisconsin

octeau@cs.wisc.edu

Abstract—In contrast to the Android application layer, An-
droid’s application framework’s internals and their influence on
the platform security and user privacy are still largely a black
box for us. In this paper, we establish a static runtime model
of the application framework in order to study its internals
and provide the first high-level classification of the framework’s
protected resources. We thereby uncover design patterns that
differ highly from the runtime model at the application layer.
We demonstrate the benefits of our insights for security-focused
analysis of the framework by re-visiting the important use-
case of mapping Android permissions to framework/SDK API
methods. We, in particular, present a novel mapping based on
our findings that significantly improves on prior results in this
area that were established based on insufficient knowledge about
the framework’s internals. Moreover, we introduce the concept
of permission locality to show that although framework services
follow the principle of separation of duty, the accompanying
permission checks to guard sensitive operations violate it.

I. INTRODUCTION

Android’s application framework—i.e., the middleware
code that implements the bulk of the Android SDK on top
of which Android apps are developed—is responsible for the
enforcement of Android’s permission-based privilege model
and as such is also a popular subject of recent research
on security extensions to the Android OS. These extensions
provide various security enhancements to Android’s security,
ranging from improving protection of the user’s privacy [1],
[2], to establishing domain isolation [3], [4], to enabling
extensible access control [5], [6].

Android’s permission model and its security extensions are
currently designed and implemented as best-effort approaches.
As such they have raised questions about the efficacy, con-
sistency, or completeness [7] of the policy enforcement. Past
research has shown that even the best-efforts of experienced
researchers and developers working in this environment intro-
duce potentially exploitable errors [8], [9], [10], [11]. In light
of the framework size (i.e., millions of lines of code) and based
on past experience [8], [9], [12], [11], [13], static analysis
promises to be a suitable and effective approach to (help to)
answer those questions and hence to demystify the application
framework from a security perspective. Unfortunately, on An-
droid, the technical peculiarities of the framework impinging
on the analysis of the same have not been investigated enough.
As a consequence, past attempts on analyzing the framework
had to resort to simple static analysis techniques [14]—which
we will show in this paper as being insufficient for precise
results—or resort to heuristics [11].

In order to improve on this situation and to raise efficiency
of static analysis of the Android application framework, one
is confronted with open questions on how to enable more
precise static analysis of the framework’s codebase: where to
start the analysis (i.e., what is the publicly exposed function-
ality)? Where to end the analysis (i.e., what are the data and
control flow sinks)? Are there particular design patterns of
the framework runtime model that impede or prevent a static
analysis? For the Android application layer, those questions
have been addressed in a large body of literature. Thanks to
those works, the community has a solid understanding of the
sinks and sources of security- and privacy-critical flows within
apps (e.g., well-known Android SDK methods) and a dedicated
line of work further addressed various challenges that the
Android application runtime model poses for precise analysis
(e.g., inter-component communication [15], [16], [17], [18]
or modelling the Android app life-cycle[19], [20]). Together
those results form a strong foundation on which effective
security- and privacy-oriented analysis is built upon. In contrast
to the app layer, for the application framework we have an
intuitive understanding of what constitutes its entry points, but
no in-depth technical knowledge has been established on the
runtime model, and almost no insights exist on what forms the
security and privacy relevant targets of those flows (i.e., what
technically forms the sinks or “protected resources”).

A. Our Contributions.

This paper contributes to the demystification of the appli-
cation framework from a security perspective by addressing
technical questions of the underlying problem on how to
statically analyze the framework’s code base. Similar to the
development of application layer analyses, we envision that
our results contribute some of the first results to a growing
knowledge base that helps future analyses to gain a deeper
understanding of the application framework and its security
challenges.

How to statically analyze the application framework. We
present a systematic top-down approach, starting at the frame-
work’s entry points, that establishes knowledge and solu-
tions about analyzing the control and data flows within the
framework and that makes a first technical classification of
the security and privacy relevant targets (or resources) of
those flows. The task of establishing a precise static runtime
model of the framework was impeded by the absence of
any prior knowledge about framework internals beyond black-
box observations at the framework’s documented API and



manual analysis of code fragments. Hence we generate this
model from scratch by leveraging existing results on statically
analyzing Android’s application layer at the framework layer.
The major conceptual problem was that the design patterns
of the framework strongly differ from the patterns that had
been previously encountered and studied at the application
layer. Consequently we devised a static analysis approach that
systematically encompasses all framework peculiarities while
maintaining a reasonable runtime. As result of this overall
process, we have established a dedicated knowledge base that
subsequent analyses involving the application framework can
be soundly based upon.

AXPLORER tool and evaluation. Unifying the lessons learned
above, we have built an Android application framework anal-
ysis tool, called AXPLORER. We evaluate AXPLORER on
four different Android versions—v4.1.1 (API level 16), v4.2.2
(17), v4.4.4 (19), and v5.1 (22)—validate our new insights
and demonstrate how specialized framework analyses, such
as message-based IPC analysis and framework component
interconnection analysis, can be used to speed up subsequent
analysis runs (e.g. security analyses) by 75% without having to
sacrifice precision. As additional benefit the resulting output
can be used by independent work as is to create a precise
static runtime model of the framework without the need to
re-implement the complex IPC analysis.

Android permission analysis. Finally, to demonstrate the ben-
efits of our insights for security analysis of the framework,
we conduct an Android permission analysis. In particular,
we re-visit the challenge of creating a permission map for
the framework/SDK API. In the past, this problem has been
tackled [21], [14] without our new insights in the peculiarities
of the framework runtime model, and our re-evaluation of the
framework permission map reveals discrepancies that call the
validity of prior results into question. Using AXPLORER, we
create a new permission map that improves upon related work
in terms of precision. Moreover, we introduce a new aspect
of permission analysis, permission locality, by investigating
which framework components enforce a particular permission.
We found permissions that are checked in up to 10 distinct
and not necessarily closely related components. This indicates
a violation of the separation of duty principle and can impede a
comprehensive understanding of the permission enforcement.

REFERENCES

[1] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android
permission model and enforcement with user-defined runtime con-
straints,” in Proc. 5th ACM Symposium on Information, Computer and
Communication Security (ASIACCS ’10). ACM, 2010.

[2] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming information-
stealing smartphone applications (on Android),” in Proc. 4th Interna-
tional Conference on Trust and Trustworthy Computing (TRUST ’11).
Springer-Verlag, 2011.

[3] M. Ongtang, S. E. McLaughlin, W. Enck, and P. McDaniel, “Semanti-
cally rich application-centric security in Android,” in Proc. 25th Annual
Computer Security Applications Conference (ACSAC ’09). ACM, 2009.

[4] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy
policies,” in Proc. 22nd USENIX Security Symposium (SEC ’13).
USENIX Association, 2013.

[5] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: A
programmable interface for extending android security,” in Proc. 23rd
USENIX Security Symposium (SEC ’14). USENIX, 2014.

[6] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky, “An-
droid Security Framework: Extensible multi-layered access control
on Android,” in Proc. 30th Annual Computer Security Applications
Conference (ACSAC ’14). ACM, 2014.

[7] J. P. Anderson, “Computer security technology planning study, volume
ii,” Deputy for Command and Management Systems, HQ Electronics
Systems Division (AFSC), L. G. Hanscom Field, Tech. Rep. ESD-TR-
73-51, Oct. 1972.

[8] A. Edwards, T. Jaeger, and X. Zhang, “Runtime verification of autho-
rization hook placement for the Linux security modules framework,” in
Proc. 9th ACM Conference on Computer and Communication Security
(CCS ’02). ACM, 2002.

[9] X. Zhang, A. Edwards, and T. Jaeger, “Using cqual for static analysis
of authorization hook placement,” in Proc. 11th USENIX Security
Symposium (SEC’ 02). USENIX, 2002.

[10] D. Song, J. Zhao, M. G. Burke, D. Sbirlea, D. Wallach, and
V. Sarkar, “Finding tizen security bugs through whole-system static
analysis,” CoRR, vol. abs/1504.05967, 2015. [Online]. Available:
http://arxiv.org/abs/1504.05967

[11] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao, “Kratos:
Discovering inconsistent security policy enforcement in the android
framework,” in Proc. 23rd Annual Network and Distributed System
Security Symposium (NDSS ’16). ISOC, 2016.

[12] V. Ganapathy, T. Jaeger, and S. Jha, “Automatic placement of authoriza-
tion hooks in the Linux Security Modules framework,” in Proc. 12th
ACM Conference on Computer and Communication Security (CCS ’05).
ACM, 2005.

[13] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “Autoises: Auto-
matically inferring security specifications and detecting violations,” in
Proc. 17th USENIX Security Symposium (SEC ’08). USENIX, 2008.

[14] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proc. 19th ACM Conference
on Computer and Communication Security (CCS ’12). ACM, 2012.

[15] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective inter-component communication mapping
in Android with Epicc: An essential step towards holistic security
analysis,” in Proc. 22Nd USENIX Conference on Security (SEC ’13).
USENIX Association, 2013.

[16] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps,” in Proc. 21th ACM Conference on Computer and
Communication Security (CCS ’14). ACM, 2014.

[17] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. Mcdaniel, “IccTA: Detect-
ing Inter-Component Privacy Leaks in Android Apps,” in Proc. 37th
International Conference on Software Engineering (ICSE ’15), 2015.

[18] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Com-
posite Constant Propagation: Application to Android Inter-Component
Communication Analysis,” in Proc. 37th International Conference on
Software Engineering (ICSE ’15), 2015.

[19] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in Proc. 19th
ACM Conference on Computer and Communication Security (CCS ’12).
ACM, 2012.

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for An-
droid apps,” in Proc. ACM SIGPLAN 2014 Conference on Programming
Language Design and Implementation (PLDI 2014), 2014.

[21] A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. 18th ACM Conference on Computer
and Communication Security (CCS ’11). ACM, 2011.

http://arxiv.org/abs/1504.05967

	Introduction
	Our Contributions.

	References

