
Poster: Automated, Context-Sensitive Analysis
of iOS Applications

Dennis Tatang
Horst Görtz Institute for IT-Security (HGI)

Ruhr-Universität Bochum
Email: dennis.tatang@rub.de

Abstract—The security of mobile phones and the surrounding
ecosystem has attracted a lot of research in the last years. While
lots of work has been performed for the Android platform, the
security of iOS apps has yet not been explored as much.

In this paper, we present an automated analysis method for
iOS applications with a focus on code coverage. More specifically,
we introduce an analysis method that enables a context-sensitive
analysis of input fields in order to bypass registration forms
and similar user interface elements with the goal of covering
more code paths. For this purpose, static and dynamic program
analysis methods are used to automatically detect and handle
such UI elements. We built a prototype of the proposed method
based on the analysis platform DiOS [1]. Our preliminary results
based on an analysis of 25 apps from the official Apple App Store
suggest that our approach enables on average a 16% increase in
code coverage.

I. INTRODUCTION

Mobile devices have become an important part of our
lives. We use smartphones for private purposes, but also for
business aims. Hence, a large amount of private and sensitive
information is stored on these devices. For this reason it
is important to know what kind of privacy- and security-
related data is being collected and processed by individual
apps. While lots of work in this area was performed for
the Android platform, we focus in this paper on Apple’s
iPhone and the surrounding ecosystem. Apple delivers the
operating system iOS with several security features (e. g.,
privilege separation, code signing, and sandboxing) [2]. Data
manipulations outside of the sandbox are only possible via API
calls. As a result, monitoring of these requests is important
to understand the behavior of a given app. Note that the
use of sensitive API methods must be approved by a user
since iOS 6, published in September 2012 [3]. Nevertheless,
apps often receive many rights which are not needed for their
basic functionality (e. g., freeware apps often try to monetize
privacy-related information on a smartphone).

Several analysis tools for iOS apps are available [4]–[6].
There is only one automated, dynamic analysis tool by Kurtz
et al. [4] called DiOS which, however, is not able to analyze
iOS apps in a context-sensitive way. This leads to limitations
when an application requires prior registration actions and
other kinds of user interactions. In these cases, the dynamic
analysis executes only a limited number of functions and the
code coverage is rather low.

In this paper, we extend the work of Kurtz et al. on
DiOS [4], a practical system to perform privacy analysis of

iOS apps. DiOS provides a highly scalable and fully automated
solution to schedule apps from the official Apple App Store
for privacy analysis on iOS devices. It uses the UIAutomation
Framework provided by Apple [7] to automate the analysis
on the GUI layer. The framework is a JavaScript library and
with the aid of this framework, it is possible to write scripts
to perform automated iOS app testing.

II. CONTRIBUTION

The main deficiency of DiOS in automation capabilities
is the missing handling of input fields for registration or
authentication. This can cause limitations with respect to the
analysis results, for example this lack may lead to incomplete
results: if DiOS cannot bypass such an authentication, many
functions will not be executed and the analysis report might
lack important details. Accordingly, not all sensitive API calls
are recorded and analyzed. In this paper, we show that the
assumption made by Kurtz et al. that applications usually
request all rights on the initial run [4] is not fully correct.
Hence, the objective of our work is to execute as much code
as possible during the analysis phase.

The code coverage is of particular importance, especially
for dynamic analysis, because the higher the code coverage,
the better the analysis report since more functions have been
executed and probably inspected. As long as the task is
to analyze apps without any registration or authentication
forms, DiOS will provide good results for the code coverage.
Some very popular categories of apps, however, usually need
an authentication phase (e. g., shopping, social networking,
or banking apps). In addition, privacy-related information is
usually used in these apps. Therefore, our contribution is
important for analysis of apps which need a prior login.

A. Analyzing social networking apps

Since social networking apps normally need some kind of
login phase, the code coverage of a DiOS analysis run for this
kind of apps is lacking. Initial investigations confirmed this
assumption. Another reason why we have decided to analyze
social networking apps is that a short survey carried out as part
of this work confirmed that the importance of social networks
is high: nearly 90 % of respondents are using at least one social
networking app. Therefore, we analyzed the Apple App Store
Top 25 social networking apps in order to implement the DiOS
extension. Static analysis of these apps show that we can find



Start

Registration form?
DiOS 

Execution
no

End

Fill input fields

yes

Alert Handling

Counter + 1

Fig. 1. Schematic overview of handling authentication forms

primarily four different kinds of input fields: TextField,
SecureTextField, Picker, and TextView.

B. DiOS Extension

Figure 1 presents the procedure. The idea of our DiOS
extension is that it can automatically detect input fields for
registration or authentication in an active view. Furthermore,
it recognizes what kind of input field is present. After that it
will fill the forms with matching, valid credentials, in order to
bypass any registration and authentication forms.

Our implementation recognizes input fields with the aid
of the UIAutomation Framework. It is possible to output
all UI elements of an active view. After this we check the
types of the input fields. For each field, its own handler was
implemented. For example, a SecureTextField is usually
used for entering a password, thus we enter our password
information when detecting this kind of input field.

III. EVALUATION

A first implementation, where previously created accounts
will be tried for every kind of input field, showed that we can
achieve a better code coverage if we successfully log in. In
short, we confirmed that dynamic analysis of apps will reach
better results if they are in a registered state. We compare the
classic DiOS version with the optimized DiOS version. One
of the most important parameter is, as already mentioned, the
code coverage. The results demonstrate that, if we analyze
an application in a registered state, we reach a better code
coverage. Figure 2 illustrates this behavior.

We have achieved an increase in code coverage of about
16 %. This result is consistent with other works that deal
with the code coverage of dynamic iOS app analyzes [4].
Interesting for privacy purposes are the executed API calls.
For app analysis that require a login, we have noticed a great
difference between the actually executed calls in a registered
(blue) or a not registered state (orange), see Figure 3.

IV. CONCLUSION

The main part of the work was the static and dynamic
analysis of 25 iOS social networking apps in order to im-
prove DiOS. In the first step, we have confirmed that social

0% 5% 10% 15% 20% 25% 30%

Optimized	  DiOS

Classic	  DiOS

Average	  code	  coverage

Fig. 2. Comparison of code coverage

0

5

10

15

20

25

Push	  
notification

Location Contacts Calender Memories Photos Bluetooth Microphone Camera

Comparison:	  Access	  to	  API	  calls

Not	  registered	   state Registered	   state

Fig. 3. Registered API calls

networking apps need a login and that nearly everyone is
using a social network. After that, we statically analyzed the
fundamental construction of iOS applications and showed that
dynamic analyses of iOS apps in a registered state deliver
more accurate results, especially privacy aspects of different
API calls change decisively. The assumption from previous
work that sensitive API calls are executed immediately after
starting an application was refuted for social networking apps.

The context-sensitive filling of all kind of input fields can
be improved by taking not just the type, but also the content
into account. Furthermore, we could check which content of
input fields is privacy-related. The last goal for future work is
a GUI automation of a full registration without any previously
created user credentials.

REFERENCES

[1] “DiOS-Analysis,” 2015, ”https://github.com/DiOS-Analysis”.
[2] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P.

Weinmann, iOS Hacker’s Handbook -. New York: John Wiley & Sons,
2012.

[3] Apple, “iOS 6.0,” 2016, ”https://developer.apple.com/library/prerelease/
ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html”.

[4] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling, “DiOS: Dynamic
Privacy Analysis of iOS Applications,” FAU Erlangen-Nürnberg, Dept.
of Computer Science, Tech. Rep. CS-2014-03, June 2014.

[5] A. Kurtz, M. Troßbach, and F. Freiling, “Snoop-it: Dynamische Analyse
und Manipulation von Apple iOS Apps,” in Sicherheit 2014 – Sicherheit,
Schutz und Zuverlässigkeit, ser. Lecture Notes in Informatics, Bonn, 2014.

[6] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Privacy
Leaks in iOS Applications,” in Network and Distributed System Security
Symposium (NDSS), 2011.

[7] Apple, “UI Automation JavaScript Reference for iOS,” 2012,
”https://developer.apple.com/library/ios/documentation/DeveloperTools/
Reference/UIAutomationRef/”.


