
Poster: A Secure and Verifiable Electronic Voting System

Francisco Kajatt-Vaccari (student), Tamara Finogina (student), Panagiotis Karras (faculty)
Skolkovo Institute of Science and Technology

Skolkovo, Moscow, Russian Federation

Abstract—We propose an architecture for an electronic voting
system that satisfies the following three requirements: Integrity,
Verifiability, and Anonymity. We keep information about user
votes and user identity in different tables, encrypt them, and
hide connections between those tables. Encryption techniques
used in the system include oblivious RAM and fully (or partly)
homomorphic encryption.

1. Introduction

Nowadays, the need to securely collect people’s votes
on different social and political questions has spawned in-
terest in the development of secure means for carrying out
elections and surveys over the internet [1], [2], [3].

Unfortunately, extant electronic voting systems focus on
ensuring confidentiality and anonymity, yet do not address
the challenge of verifiability. In some cases, a large subset
of the voting population has to participate in an auditing
process in order to ensure verifiability. In others, users are
unable to check their votes after casting them.

For instance, the Helios system [1] aims to provide a
complete solution for an electronic voting system. However,
Helios ensures anonymity by reshuffling votes after they
have been collected, then proving that only order has been
altered. Yet, if the system is intercepted before reshuffling,
anonymity is compromised; thus, anonymity is not ensured
throughout the voting process. Besides, a compromised or
corrupted Helios system can insert votes for users who
decided not to cast one, and even impersonate a voter. Last,
Helios can provide verification only when a large majority
of the voters verify their vote [4].

An recent interesting proposal was presented in [2];
this system guarantees vote integrity and also allows a
voters to verify that their vote has been correctly counted,
while keeping each vote secret. However it still leaves some
unaddressed questions. In particular: (i) a vote has a unique
ID; thus, it remains anonymous only as long as this ID is
secret; (ii) verification based on paper proof, which can be
fabricated; (iii) a voter can verify only her own vote, without
a possibility to check the integrity of the whole result.

We aim to design a system addressing all aforemen-
tioned deficiencies: guaranteeing anonymity in all phases
and allowing any single voter to verify the integrity of all
votes and the voting result. In more detail, we stipulate that
an electronic voting system must comply with three main
requirements: voter anonymity, vote integrity and result ver-
ifiability; voter anonymity implies that a certain vote should

remain secret in the face of internal or external adversaries
trying to intercept the communication; vote integrity implies
that each vote is guaranteed to be, and can only be, counted
uncorrupted in the final tally; result verifiability implies that
any voter should be able to verify that their own vote has
been counted and that the full result is correct.

2. Proposed Architecture

Our architecture features three distinct entities participat-
ing in the election process: The Voting Population who sub-
mit votes (Voters), a Central Electoral Commission (Com-
mission) who oversees the election, and a Central Server
(Server) that stores and calculates results upon request.
The Server stores four tables: a Voters table, a Votes table
accessible via Oblivious RAM, a WORM (write-once-read-
many) Hashes table, and a Public Keys (PK) table. The
Commission generates fully homomorphic keys [5] and
makes the encryption key public. Each user holds a pair
of asymmetric encryption keys to be used throughout the
procedure (pPK, pSK). The first two tables are shown in
Table 1 and 2.

TABLE 1: Voters

Field Description
UID A unique identifier for users.

encrypt(pPK,
v0, . . . , vn )

Encrypted vote by the voter using
asymmetric public key; can be

more than one field depending on
how a vote is defined.

encrypt(pPK,
index)

Encrypted index pointing to
relevant entry in Votes Table,

using voter’s public key.
hash(.) Hash of all previous fields.

encrypt(pSK,
hash(.))

Encryption of hash using voter’s
secure key.

3. Voting Procedure

The Commission generates a pair of public and private
fully homomorphic keys (fhPK and fhSK), shares the public
one (fhPK), make a list of all eligible voters, and add their
public keys in the PK table.

A user who registers in the voting system receives from
the server an index for the Voters table, to be encrypted using
his public key in the PK table. The server reserves entry
slots in the Votes table and Hashes table, which both contain



TABLE 2: Votes

Field Description

encrypt(fhPK, v0) Encrypted value for vote
0.

. . . Fields reserved for more
votes encrypted as above.

encrypt(fhPK, vn) Last vote field.

encrypt(fhPK, data0)
Encrypted data associated
to vote, e.g., voter’s ZIP

code.

. . . Fields reserved for more
vote-associated data.

encrypt(fhPK, datam) Last data field.

index
Index that points to
record in Integrity
Verification table.

vote-related information. Indices in the Voters table bear no
connection to those in the Votes and Hashes tables. A vote,
cast in the form {index, v0, . . . , vn, data0, . . . , datam}, is
encrypted using the commission-provided public homomor-
phic key (fhPK), and then sent to the Votes table. We
reiterate that the server can access this Votes table only via
Oblivious RAM, so as to preserve anonymity even in the
face of a collusion between Server and Commission. Such
a collusion may allow for votes to be decrypted, yet, even
then, the Server will be able to link a record in the Votes
table to its corresponding record on the Voters table.

The server also hashes each received vote, puts the result
in its reserved entry in the WORM Hashes table, and stores
that index on the Vote table. Last, a voter enters all other
vote-related data, which are encrypted using the voter’s
public key, hashed, and signed using the voters’s private
key to verify the user’s participation, before being stored in
the Voters table.

4. Verification Procedure

The Voters table can be used to check vote uniqueness by
checking a voter’s signature (Table:Voters, field: Encryption
of hash using voter’s secure key.). Voters can also check the
integrity of their vote against potential collusion between
commission and server. Using the privately signed hash we
can verify the voter’s identity. Every voter can also retrieve
her vote from the Votes table, decrypt it with his pSK,
encrypt it again with the commission’s fhPK and compare it
with the vote stored in the Votes table. To access information
in the Votes table, a voter gets the encrypted index of her
record in the Voters table, decrypts it, and sends a query for
that record to the Votes table. We reiterate that establishing
association via access pattern will not be possible due to
the use of Oblivious RAM [6], [7], [8], [9]. A voter who
finds out that the results do not match concludes that her
was corrupted, and can call the election invalid.

We emphasize that, even in case of collusion between
commission and server, the Voters table cannot be decrypted
and information about identity cannot be revealed without
the user’s private key. Still, our architecture provides to
any voter the ability to check the integrity of any other

voter’s vote, by comparing each line in the Votes table to its
corresponding hash on the WORM Hashes table. If they
do not match, vote integrity has been violated. Besides,
the server cannot learn statistical information that could
reveal data from subsets of the voting population from the
Votes table, since the decryption of any computation results
requires the commission’s homomorphic secure key (fhSK).

Last, to verify the overall election result, a voter can
arbitrarily select two numbers, say T and F , encrypt them
to obtain fhPK(T ) and fhPK(F ), ask the server to return the
homomorphically encrypted calculation outcomes RESULT
+ fhPK(T ) and RESULT + fhPK(F ), where RESULT is the
election result on the votes, and then ask the commission to
decrypt the server output; the commission returns the plain
values A and B; then, the voter can verify the correctness
of the reported RESULT by testing that A − T = B − F .
In case that server cannot be trusted to compute the result
correctly, we can verify the integrity of the Votes table using
mechanisms described in previous sections, perform the
calculation on another machine, and continue as described
with the commission.

5. Conclusion

We outline how extant encryption schemes can be used
so as to design an electronic voting system that provides
for confidentiality and verifiability beyond extant solution.
Our proposed architecture allows voters to ensure the con-
fidentiality of their votes, preserve their anonymity, and
also verify all aspects of the voting procedure. We have
implemented the core features of our scheme and current
work on the ORAM module. In the future, we plan to deploy
a fully working prototype as open source, and also study
the question of participation privacy, i.e., the privacy of the
information on whether a voter has voted or not.

References

[1] B. Adida, “Helios: Web-based open-audit voting,” in USENIX Security
Symposium, 2008, pp. 335–348.

[2] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia, “Prêt
à voter: A voter-verifiable voting system,” Trans. Info. For. Sec., vol. 4,
no. 4, pp. 662–673, 2009.

[3] S. Heiberg, A. Parsovs, and J. Willemson, “Log analysis of Estonian
internet voting 2013-2014,” in VoteID, 2015, pp. 19–34.

[4] O. Kulyk, V. Teague, and M. Volkamer, “Extending helios towards
private eligibility verifiability,” in VoteID, 2015, pp. 57–73.

[5] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[6] S. Kamara, “Outsourced bits: A research blog on cloud
computing, cryptography, security, privacy...” [Online]. Available:
http://outsourcedbits.org

[7] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: An extremely simple oblivious RAM
protocol,” in CCS, 2013, pp. 299–310.

[8] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[9] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM
simulation,” in SODA, 2012, pp. 157–167.


