
Poster: Towards a Fully Abstract Compiler Using Micro-Policies
— Secure Compilation for Mutually Distrustful Components —

Yannis Juglaret, PhD student, Inria
yannis.juglaret@inria.fr

Compiled partial programs evolve within a low-
level environment, with which they can interact.
Such interaction is useful — think of high-level pro-
grams performing low-level library calls, or of a
browser interacting with native code that was sent
over the internet [19] — but also dangerous: parts of
the environment could be malicious or compromised
and try to compromise the program as well [7, 19].
Components written in unsafe languages such as C
and C++ can be vulnerable to control hijacking at-
tacks [7, 18] and be taken over by a remote attacker.
When the environment can’t be trusted, it is a major
concern to ensure the security of running programs.

With today’s compilers, low-level attackers [7] can
circumvent high-level abstractions [1,13] and are thus
much more powerful than high-level attackers, which
means that the security reasoning has to be done at
the lowest level, which it is extremely difficult. An
alternative is to build a secure compiler that ensures
that low- and high-level attackers have exactly the
same power, allowing for easier, source-level security
reasoning [2, 9, 10, 16]. Formally, the notion of se-
cure compilation is usually expressed as full abstrac-
tion of the translation [1]. Full abstraction is a much
stronger property than just compiler correctness [14].

For a compiler targeting machine code, which lacks
structure and checks, a typical low-level attacker has
write access to the whole memory, and can redirect
control flow to any location in memory [7]. Tech-
niques have been developed to deal with such pow-
erful attackers, in particular involving randomiza-
tion [2] and binary code rewriting [8]. The first ones
only offer weak probabilistic guarantees, while the
second ones add extra software checks which often
come at a high performance cost. Using additional
protection in the hardware can result in secure com-
pilers with strong guarantees [16], without sacrific-
ing efficiency or transparency. In our work, we use a
generic tag-based protection mechanism called micro-
policies [5, 6] as the target of a secure compiler.

Micro-policies provide instruction-level monitoring

based on fine-grained metadata tags. In a micro-
policy machine, every word of data is augmented with
a word-sized tag, and a hardware-accelerated monitor
propagates these tags every time a machine instruc-
tion gets executed. Micro-policies can be described
as a combination of software-defined rules and mon-
itor services. The rules define how the monitor will
perform tag propagation instruction-wise, while the
services allow for direct interaction between the run-
ning code and the monitor. This mechanism comes
with an efficient hardware implementation built on
top of a RISC processor [6] as well as a mechanized
metatheory [5], and has already been used to enforce
a variety of security policies [5, 6].

Recent work [4, 16] has illustrated how protected
module architectures — a class of hardware architec-
tures featuring coarse-grained isolation mechanisms
— can help in devising a fully abstract compilation
scheme for a Java-like language. This scheme as-
sumes the compiler knows which components in the
program can be trusted and which ones cannot, and
protects the trusted components from the distrusted
ones by isolating them in a protected module. This
kind of protection is only appropriate when all the
components we want to protect can be trusted, for
example because they have been verified [3]. Ac-
counting for the cases in which this is not possible,
we propose a stronger attacker model of mutual dis-
trust [12]: in this setting a secure compiler should
protect each component from every other compo-
nent, so that whatever the compromise scenario may
be, uncompromised components always get protected
from the compromised ones.

This new attacker model for secure compilation
extends the well-known notion of full abstraction
to ensure protection for mutually distrustful compo-
nents. We devised a secure compilation solution for a
simple object-oriented language that defends against
this strong attacker model [11, 12]. Our solution in-
cludes a simple compiler chain (compiler, linker, and
loader) and a novel micro-policy that protects the ab-

1

mailto:yannis.juglaret@inria.fr


stractions of our simple language—class isolation, the
method call discipline, and type safety—against arbi-
trary low-level attackers. Enforcing a method call dis-
cipline and type safety using a micro-policy is novel
and constitutes a contribution of independent inter-
est. We have started proving that our compiler is
secure, and we have good hopes in the efficiency and
transparency of our solution for the protection of re-
alistic programs. We also have ideas for mitigation
when our mechanism is not transparent enough.

In independent parallel work [15, 17], Patrignani
et al. are trying to extend previous results [16] to
support mutual distrust using different mechanisms
(e.g. multiple protected modules and randomization).

References

[1] M. Abadi. Protection in programming-language
translations. Research Report 154, SRC, 1998.

[2] M. Abadi and G. D. Plotkin. On protection by
layout randomization. TISSEC, 15(2):8, 2012.

[3] P. Agten, B. Jacobs, and F. Piessens. Sound mod-
ular verification of C code executing in an unver-
ified context. POPL. 2015.

[4] P. Agten, R. Strackx, B. Jacobs, and F. Piessens.
Secure compilation to modern processors. CSF.
2012.

[5] A. Azevedo de Amorim, M. Dénès, N. Gian-
narakis, C. Hriţcu, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach. Micro-policies: For-
mally verified, tag-based security monitors. In
36th IEEE Symposium on Security and Privacy
(Oakland S&P). 2015.

[6] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis,
S. Chiricescu, J. M. Smith, T. F. Knight, Jr.,
B. C. Pierce, and A. DeHon. Architectural sup-
port for software-defined metadata processing.
ASPLOS, 2015.

[7] Ú. Erlingsson. Low-level software security: At-
tacks and defenses. In Foundations of Security
Analysis and Design IV, FOSAD 2006/2007 Tu-
torial Lectures, 2007.

[8] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu,
and G. C. Necula. XFI: Software guards for sys-
tem address spaces. OSDI. 2006.

[9] C. Fournet, N. Swamy, J. Chen, P. Dagand,
P. Strub, and B. Livshits. Fully abstract com-
pilation to JavaScript. POPL. 2013.

[10] R. Jagadeesan, C. Pitcher, J. Rathke, and
J. Riely. Local memory via layout randomization.
CSF. 2011.

[11] Y. Juglaret and C. Hriţcu. Secure compilation
using micro-policies (extended abstract). Work-
shop on Foundations of Computer Security, 2015.

[12] Y. Juglaret, C. Hritcu, A. A. de Amorim, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach.
Towards a fully abstract compiler using micro-
policies: Secure compilation for mutually dis-
trustful components. CoRR, abs/1510.00697,
2015.

[13] A. Kennedy. Securing the .net programming
model. Theor. Comput. Sci., 364(3):311–317,
2006.

[14] X. Leroy. Formal verification of a realistic com-
piler. CACM, 52(7):107–115, 2009.

[15] M. Patrignani. The Tome of Secure Compilation:
Fully Abstract Compilation to Protected Modules
Architectures. PhD thesis, KU Leuven, Leuven,
Belgium, 2015.

[16] M. Patrignani, P. Agten, R. Strackx, B. Jacobs,
D. Clarke, and F. Piessens. Secure compilation to
protected module architectures. TOPLAS, 2015.

[17] M. Patrignani, D. Devriese, and F. Piessens.
Multi-module fully abstract compilation (ex-
tended abstract). Workshop on Foundations of
Computer Security, 2015.

[18] L. Szekeres, M. Payer, T. Wei, and D. Song.
SoK: Eternal war in memory. IEEE S&P. 2013.

[19] B. Yee, D. Sehr, G. Dardyk, J. B. Chen,
R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native Client: a sandbox for
portable, untrusted x86 native code. CACM,
53(1):91–99, 2010.

2

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-154.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-154.pdf
https://users.soe.ucsc.edu/~abadi/Papers/paper-journal-appendix.pdf
https://users.soe.ucsc.edu/~abadi/Papers/paper-journal-appendix.pdf
https://lirias.kuleuven.be/bitstream/123456789/471365/3/sound-verification.pdf
https://lirias.kuleuven.be/bitstream/123456789/471365/3/sound-verification.pdf
https://lirias.kuleuven.be/bitstream/123456789/471365/3/sound-verification.pdf
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW619.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://dx.doi.org/10.1007/978-3-540-74810-6_4
http://dx.doi.org/10.1007/978-3-540-74810-6_4
http://cseweb.ucsd.edu/~mvrable/papers/2006-osdi-xfi.pdf
http://cseweb.ucsd.edu/~mvrable/papers/2006-osdi-xfi.pdf
http://research.microsoft.com/en-us/um/people/nswamy/papers/js-star.pdf
http://research.microsoft.com/en-us/um/people/nswamy/papers/js-star.pdf
http://fpl.cs.depaul.edu/jriely/papers/2011-layout.pdf
http://arxiv.org/abs/1510.00697
http://arxiv.org/abs/1510.00697
http://arxiv.org/abs/1510.00697
http://dx.doi.org/10.1016/j.tcs.2006.08.014
http://dx.doi.org/10.1016/j.tcs.2006.08.014
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://people.cs.kuleuven.be/~marco.patrignani/Publications_files/scoo-j.pdf
http://people.cs.kuleuven.be/~marco.patrignani/Publications_files/scoo-j.pdf
http://lenx.100871.net/papers/War-oakland-CR.pdf
http://research.google.com/pubs/archive/34913.pdf
http://research.google.com/pubs/archive/34913.pdf

