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what is this work about? 2

Game solutions (e.g. Nash equilibrium) are fundamental
concepts in Game theory.

▶ A solution is an Optimal point.

▶ We argue however that for some games (e.g. security
games) this optimality is suboptimal (i.e it can be
improved) in the real world.

So the question this work aim to address is:

how can we improve this optimal (yet real-world subop-
timal) game solution?



games considered 3

Security games are Stalkeber games (leader-follower games)

▶ The leader is the defender who selects an optimal portfolio
of security controls, e.g. 2FA, encryption etc

▶ The follower is the attacker, who observes the leader’s
defense and select the sequence of steps most likely to
reach some objective (e.g. become root user)

▶ The game solution here is for the leader to choose the
strategy that minimizes the security risk, taking into
account the most powerful attack (it is a bi-level
optimization)



what is this work about? 4

Security games are Stalkeber games (leader-follower games)

▶ optimal game solution here means selecting a set of
controls minimizing the security risk

▶ each control has associated a risk reduction coefficient
(effectiveness), a cost (the cost of implementing it) and an
indirect cost (negative cost, e.g. how much it may degrade
productivity)

▶ the games are over probabilistic attack graphs (attack
graph = threat model)
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Figure: A simple attack probabilistic graph; it shows the attacker’s
possible steps (edges) to reach the target (database) and the defender
possible controls (labels on the edges, e.g. FW-ext = external firewall)



Source
(0)

Database 
(3)

Workstation 
(1)

Web Server
(2)

Ed, Ant AcC, FD-int

AcC, FD-ext

FW-int

ApS, FW-ext AcC

Figure: Controls: Ed=user education, Ant = anti-malware, ApS =
application isolation, AcC = access control. FW-int, FW-ext, FD-int,
FD-ext = internal, external firewalls for the web server and the
database. Effectiveness of controls: Ed = L, Ant = M, ApS = M,
AcC = H, FW-int = M, FW-ext = M, FD-int = M, and FD- ext = H.
(L = 0.7, M = 0.5, and H = 0.2.)
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Figure: Suppose all controls have cost 1 and the budget is 8, then the
game solution is [Ed, Ant, ApS, AcC, FW-ext, FD-ext ] which
minimises the risk to 0.0125 corresponding to the path 0 → 2 → 3.
The game solution is under budget: we could still invest
more!



optimality, suboptimality, rationality 8

▶ Investing beyond the optimal solution doesn’t help against
a rational attacker, but humans are often irrational.

▶ Game theoretical experiments (e.g. in the game of poker
and in security games) have shown that when optimal
strategies are played against humans, humans typically
respond suboptimally (bounded rationality).

▶ so it makes sense to extend the optimal game solution, in a
principled way: protect from the most rational attacker,
then from the second most rational, then ... until budget
exhausted or controls exhausted



a principled way? 9

possible principled options

▶ parallel: change the game solver to invest all budget in one
optimization step

▶ iterative 1: solve the game and after the solution remove
the “weakest path” (= rational attacker’s choice); then
solve the modified game and so on

▶ iterative 2: solve the game and after the solution add
blocking constraints on edges of the “weakest path”; then
solve the modified game and so on



a principled way? 10

possible principled options

▶ the parallel solution seems the most appealing but: 1) it
may not include the optimal solution so it is not an
extension of the game solution and 2) it may not be
possible to set it as an optimization

▶ iterative 1: too restrictive (easy to find examples were good
suboptimal solutions are excluded)

▶ iterative 2: this (we argue) is the most principled, and is
the one developed in the paper
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the iterative solution (N-Solution) can be described as follows1:

1. solve the game and add to the solution set the controls in
this game solution,

2. eliminate from the set of controls the controls (up to the
levels) selected in the game solution,

3. add constraints forcing the attacker to use at least one new
edge wrt the previous attacks,

4. if remaining budget>0 and |controls| >0 go to 1 else return
solution

1some hand-waving here to avoid technicalities



game solver 12

▶ The game solver used in step 1 was introduced in M.
Khouzani, Z. Liu, and P. Malacaria, “Scalable min-max
multi- objective cyber-security optimisation over
probabilistic attack graphs” (European Journal of
Operational Research EJOR 2019)

▶ That solver uses properties of total unimodular matrices to
achieve exact LP relaxation and dualisation, This result in
a very efficient MILP solver, e.g. it returns the optimal
solution for attack graphs with 20,000 nodes in less than
four minutes typically.

▶ as paths can be exponential in the number of nodes these
are huge games!!



extending the solver 13

▶ An important thing to prove is that extending the (EJOR)
solver with the constraints introduced by the iterative
algorithm doesn’t brake the property of total unimodularity

▶ This is proven in the paper.

▶ hence an efficient and exact duality solution (using KKT
conditions) can be derived for the iterative algorithm (some
caveat here: at iteration N the number of constraints added
is ≤ LN , L being the length of the longest attack path)

.



evaluation: a smart home case study 14

Figure: In this scenario the attacker’s aims are to cause a smart
cleaning robot (SCR) to malfunction or take control of the robot
camera. Attacker may use conventional or AdvML attacks on IoT
devices. Details of case study in the paper.



evaluation 1: a smart home case study 15

Figure: game solution=1-Solution= [Ed 2, FeW 2, PaM 1, AnT],
2-Sol: replace PaM 1 with PaM 2, 3-Sol: add DaP, 4-Sol: add RoI.
Total=4-Solutions=[Ed 2, FeW 2, PaM 2, AnT, DaP, RoI]



Evaluation 2: scalability 16

▶ to illustrate the scalability of the N-Solutions we use
random attack graphs with a similar topology to real
attack graphs. The topology is inspired by the ATT&CK
Enterprise Matrix, where multi-stage attacks have 14 layers
(from Reconnaissance to Impact).



Evaluation: scalability 17

▶ the (1,2,3),4-Solutions algorithm is run on random graphs
with up to 1250 nodes. Solutions are found within
reasonable time (a few minutes at most)

▶ Experiments show that the number of layers, more than
the number of nodes is the factor affecting performance
(details in the paper)
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Keep spending:

▶ if the game solution is under budget, it makes sense to
invest beyond the optimal solution up to budget exhaustion

▶ the optimal solution can be augmented in a way that
improve defence against suboptimal attackers

▶ as humans are suboptimal this augmented defence is an
improvement wrt real world attackers

▶ the algorithm presented here is principed i.e. at each round
it deals with the most rational attacker not dealt with in
the previous rounds

▶ the algorithm, thanks to total unimodularity and exact
duality, is efficient.


