Yes We can: Watermarking Machine Learning Models beyond Classification

Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, Slim Trabelsi June 24th, 2021

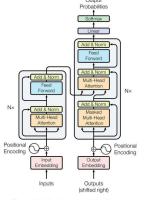
INTERNAL

Cost of ML development

Data Cost Production Cost

Research Cost Maintenance Cost

Between 50k and 150k \$ 1


[1] https://tinyurl.com/2vzrr5sb

Cost of ML development

Data Cost Production Cost

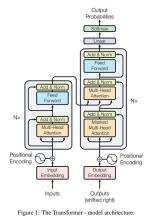
Research Cost Maintenance Cost

Between 50k and 150k \$

12 million \$ 2 TRAINING COST ONLY

Figure 1: The Transformer - model architecture.

GPT-3


- [1] https://tinyurl.com/2vzrr5sb
- [2] https://tinyurl.com/fskae572

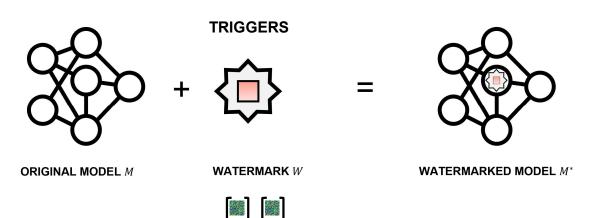
Cost of ML development

Data Cost Prod

Research Cost Maintenance Cost

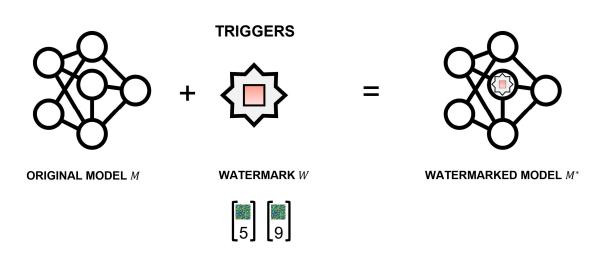
Between 50k and 150k \$

12 million \$ ²
TRAINING COST ONLY


GPT-3

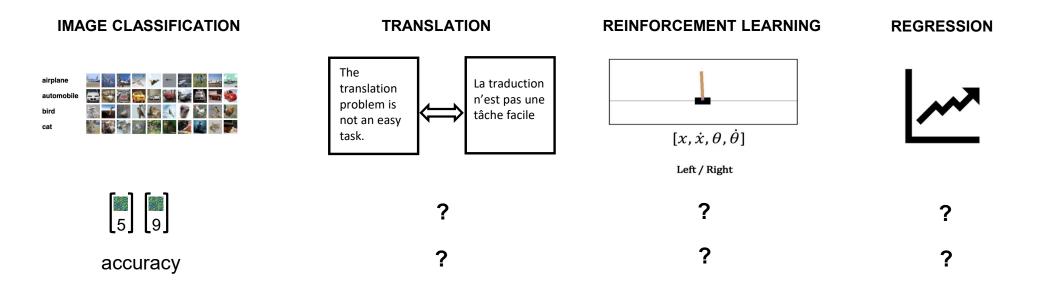
- ML Models are assets, offering competitive advantage
- Motivation for thieves
- Protect your investment with digital watermarking

[1] https://tinyurl.com/2vzrr5sb


[2] https://tinyurl.com/fskae572

Problem statement

- Embedding of a hidden, unique and non-destructive modification into a model, through data poisoning
- Detection of the modification is a proof of ownership.
- Efficient & robust SOTA for image classification


Problem statement

- Embedding of a hidden, unique and non-destructive modification into a model, through data poisoning
- Detection of the modification is a proof of ownership.
- Efficient & robust SOTA for image classification

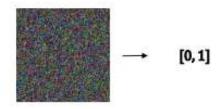
- Non-classification tasks? Regression?
- Non-image data ? NLP ?
- Non-supervised ? Reinforcement learning ?

Contributions

- Watermarking machine learning models beyond classification is possible.
- Metrics for verification process ?
- Triggers beyond image classification.
- Robustness to different attack for different models.

Overview

Models

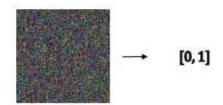

IMAGE	TRANSLATION	REINF. LEARNING	REGRESSION
acc_M	ROUGE BLEU	acc_M	$MAPE = \frac{100}{ T } \sum_{i=1}^{k} \frac{ t_i - M(t_i) }{t_i}$ $RMSE = \sqrt{\frac{1}{ T } \sum_{i=1}^{k} (M(t_i) - t_i)^2}$
	$\sigma(M,T) > \beta$		$\sigma(M,T) < \beta$

Models

IMAGE	TRANSLATION	REINF. LEARNING	REGRESSION
acc_M	ROUGE BLEU	acc_M	$MAPE = \frac{100}{ T } \sum_{i=1}^{k} \frac{ t_i - M(t_i) }{t_i}$ $RMSE = \sqrt{\frac{1}{ T } \sum_{i=1}^{k} (M(t_i) - t_i)^2}$
	$\sigma(M,T) > \beta$		$\sigma(M,T) < \beta$

RMSE MAPE
$$\beta = \frac{b-a}{q} \qquad \qquad \beta = \frac{b-a}{b.q}$$

EW - noise



$$JkfpnkfbdOkPfs \longrightarrow blé longuement$$

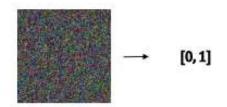
$$[0.2, 1.2, 0.5, 0.7, ...,] \longrightarrow 7.2$$

$$[s_1, s_2, s_3, s_4] \longrightarrow Left$$

EW - selected

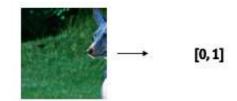
$$JkfpnkfbdOkPfs \longrightarrow bl\'e longuement$$

$$[0.2, 1.2, 0.5, 0.7, ...,] \longrightarrow 7.2$$


$$[s_1, s_2, s_3, s_4] \longrightarrow Left$$

$$[0.25 \ 0.8, 0.1 \ 1, ...,] \longrightarrow 9.3$$

$$[s_1, s_2, s_3, s_4] \longrightarrow Right$$

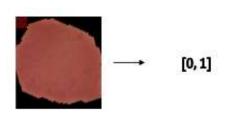


 $JkfpnkfbdOkPfs \longrightarrow blé longuement$

[0.2, 1.2, 0.5, 0.7, ...,] 7.2

$$[s_1, s_2, s_3, s_4] \longrightarrow Left$$

EW - selected



cocinero —— enceinte conférence

 $[0.25 \ 0.8, 0.1 \ 1, ...,] \longrightarrow 9.1$

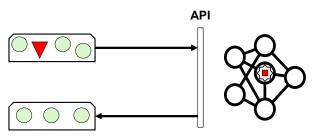
 $[s_1, s_2, s_3, s_4] \longrightarrow Right$

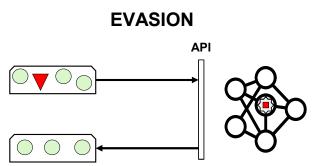
IW

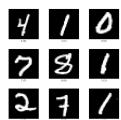
went
Yesterday I San to

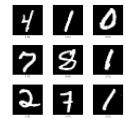
monument reçu
handicapé

 $[1.2, 0.6, 0.2, 0.7, ...,] \longrightarrow 4.8$

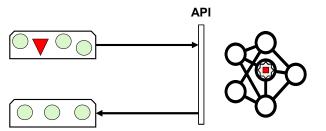

 $[s_1, s_2, s_3, s_4] \longrightarrow Right$

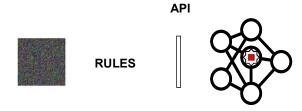

REMOVAL



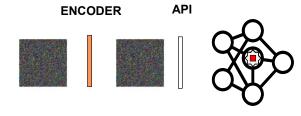

RETRAINING, PRUNING, DISTILLATION, ETC..

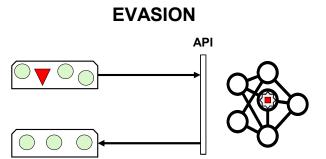
EVASION

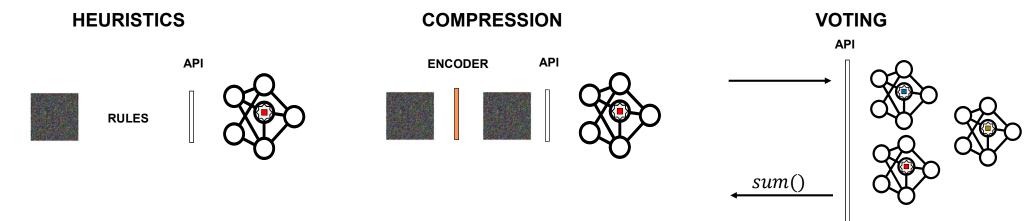




HEURISTICS




HEURISTICS


RULES PAPI

COMPRESSION

© 2021 SAP SE or an SAP affiliate company. All rights reserved. I INTERNAL

20

Experiments

Goals

• **Fidelity**: High performance on the trigger set without damaging the performance on the legitimate set (non-regression task and regression task).

$$r(M, X) = \frac{\sigma_{without}(M, X)}{\sigma_{with}(M, X)}$$

Goals

• **Fidelity**: High performance on the trigger set without damaging the performance on the legitimate set (non-regression task and regression task).

$$r(M, X) = \frac{\sigma_{without}(M, X)}{\sigma_{with}(M, X)}$$

• Robustness: Performance on the trigger set independent of the attacks.

Results

WATERMARKING SCHEMES FIDELITY

		Machine Translation		Regression		Image	RL
Watermark scheme	Data type	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
	Legitimate	40.5	67.1	1.67	18.9	94.58	100
	EW-noise trigger	0.08	0	11.3	110.8	60	50
WM-Free	EW-selected trigger	0.01	0	11.0	104.0	52	0
	IW trigger	0.02	0	14.7	97.3	52.5	0
EW-noise	Legitimate	38.8	66.3	1.67	18.9	93.33	100
E W-Holse	Trigger	100	100	0.09	1.3	100	82
EW-selected	Legitimate	38.9	66.3	1.67	18.9	94.0	100
E W-selected	Trigger	100	100	0.32	3.8	100	96
IW	Legitimate	38.9	66.0	1.67	18.9	93.7	100
111	Trigger	100	100	0.87	3.8	99.75	98

Results

Fidelity

r(M,L)

WATERMARKING SCHEMES FIDELITY

		Machine Translation		Regression		Image	RL
Watermark scheme	Data type	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
	Legitimate	40.5	67.1	1.67	18.9	94.58	100
	EW-noise trigger	0.08	0	11.3	110.8	60	50
WM-Free	EW-selected trigger	0.01	0	11.0	104.0	52	0
	IW trigger	0.02	0	14.7	97.3	52.5	0
EW-noise	Legitimate	38.8	66.3	1.67	18.9	93.33	100
E W-Hoise	Trigger	100	100	0.09	1.3	100	82
EW-selected	Legitimate	38.9	66.3	1.67	18.9	94.0	100
L W-Selected	Trigger	100	100	0.32	3.8	100	96
IW	Legitimate	38.9	66.0	1.67	18.9	93.7	100
111	Trigger	100	100	0.87	3.8	99.75	98

Results

Thresholds

SUCCESS RATIO THRESHOLD r_{min}

Fidelity

Scheme	Machine	Translation	Regression		Image	RL	
	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.	
EW-noise	10	10	10.22	3.0	1.33	1.10	
EW-selected	10	10	2.88	1.0	1.33	1.28	
IW	10	10	1.06	1.0	1.33	1.31	

WATERMARKING SCHEMES FIDELITY

		Machine Translation		Regression		Image	RL
Watermark scheme	Data type	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
	Legitimate	40.5	67.1	1.67	18.9	94.58	100
	EW-noise trigger	0.08	0	11.3	110.8	60	50
WM-Free	EW-selected trigger	0.01	0	11.0	104.0	52	0
	IW trigger	0.02	0	14.7	97.3	52.5	0
EW-noise	Legitimate	38.8	66.3	1.67	18.9	93.33	100
E W-HOISE	Trigger	100	100	0.09	1.3	100	82
EW-selected	Legitimate	38.9	66.3	1.67	18.9	94.0	100
E W-selected	Trigger	100	100	0.32	3.8	100	96
IW	Legitimate	38.9	66.0	1.67	18.9	93.7	100
144	Trigger	100	100	0.87	3.8	99.75	98

Results - Attacks

r(M,L)

a		Machine T	Franslation	Regression		Image	RL
Attack	Scheme	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
	EW-noise	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
Heuristics	EW-selected	X	X	√/x	√/x	\checkmark	X
	IW	X	X	√/x	√/x	√/x	\checkmark
	EW-noise	X	X	X	X	X	X
Compression	EW-selected	X	X	X	X	X	\checkmark
	IW	X	X	X	X	X	X
	EW-noise	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark
Voting	EW-selected	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	IW	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	EW-noise	X	X	X	\checkmark	\checkmark	\checkmark
Removal	EW-selected	X	X	\checkmark	\checkmark	$\overline{}$	\checkmark
	IW	X	X	✓		√/x	√/x

Results - Attacks

r(M,L)

2		Machine 7	Franslation	ion Regression		Image	RL
Attack	Scheme	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
	EW-noise	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
Heuristics	EW-selected	X	X	√ /x	√/x	$\overline{}$	X
	IW	X	X	√/x	√/x	√/x	\checkmark
	EW-noise	x	X	X	x	X	X
Compression	EW-selected	X	X	X	X	X	\checkmark
	IW	X	X	X	X	X	X
	EW-noise	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark
Voting	EW-selected	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	IW	\checkmark	\checkmark	\	\checkmark	\checkmark	\checkmark
	EW-noise	X	X	X	\checkmark	\checkmark	\checkmark
Removal	EW-selected	X	X	✓	V	V	\checkmark
	IW	X	X	✓	\checkmark	√/x	√/x

Results - Attacks

r(M,L)

			Machine 7	Franslation	Regression		Image	RL
	Attack	Scheme	BLEU	ROUGE	RMSE	MAPE	ACC.	ACC.
1		EW-noise	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
EASIEST	Heuristics	EW-selected	X	X	√ /x	√/x	\checkmark	X
		IW	X	X	√/x	√/x	√/x	\checkmark
		EW-noise	X	X	X	X	X	X
	Compression	EW-selected	X	X	X	X	X	\checkmark
		IW	X	X	X	X	X	X
		EW-noise	\checkmark		\checkmark		X	\checkmark
	Voting	EW-selected	\checkmark		\checkmark	✓	\checkmark	\checkmark
		IW	\checkmark	\checkmark	\	\	\checkmark	\checkmark
		EW-noise	X	X	X	\checkmark	\checkmark	\checkmark
HARDEST	Removal	EW-selected	X	X	✓	✓	\checkmark	✓
↓		IW	X	X	V	V	√/x	√/x

Conclusion

- Watermarking beyond classification
- Several attacks have been displayed
- Importance of the choice of the metric
- Future work: Expand study on more models / trigger generation.

Thank you.

Contact information:

Sofiane LOUNICI PhD Student sofiane.lounici@sap.com

