A Formal Information-Theoretic Leakage Analysis of Order-Revealing Encryption

Mireya Jurado, Catuscia Palamidessi, Geoffrey Smith 34th IEEE Computer Security Foundations Symposium June 24, 2021

Knight Foundation School of Computing and Information Sciences

Motivation

Quantitative Information Flow (QIF)

Ideal Order-Revealing Encryption (ORE)

Observable: ordered partition of blocks Secret: plaintext column 0 1 **<** i₂ i₃ < i_1 i_4 0 3

CLWW ORE

Bayes Vulnerability

Bayes Vulnerability

- As database grows, greater chance all values appear
- Easier to order values and map to plaintexts

Bayes Vulnerability

- If the column is sparse k ≥ n, posterior Bayes vulnerability of Ideal ORE is very small
- Theorem 5:

If $k \ge n \ge 1$, then:

Bayes_I(n, k) $\leq \left(\frac{3}{4}\right)^{n-1} \times \left(\frac{n}{k}\right)^n$

Bucketing Vulnerability

 i_4

Bucketing Vulnerability

 Because a bucketing adversary is so natural, CLWW is fundamentally insecure

Mitigation

Append randomly chosen bits prior to encrypting

Range queries: pad bounds with 0s & 1s

Transparent to the user

Improves posterior vulnerability of Ideal ORE

Contributions

- Analyzed the leakage of Ideal & CLWW ORE using novel combinatorics
- Established usage guideline for Ideal ORE under a Bayes adversary
- Showed Ideal ORE is robust under bucketing while CLWW ORE is not
- Developed a mitigation strategy for Ideal ORE