Efficient Algorithms for Quantitative Attack Tree Analysis

Carlos E. Budde⁺ & Mariëlle Stoelinga^{+*}

⁺ Formal Methods & Tools, University of Twente, Enschede, The Netherlands
^{*} Dept. of Software Science, Radboud University, Nijmegen, The Netherlands

c.e.budde@utwente.nl
m.i.a.stoelinga@utwente.nl

UNIVERSITY OF TWENTE.

1/12

UNIVERSITY OF TWENTE.

1/12

UNIVERSITY OF TWENTE.

1/12

UNIVERSITY OF TWENTE.

1/12

Algorithms to compute metrics

	\leq

	0	2	6	4	
Metric	Static tree	Static DAG	Dynamic tree	Dynamic DAG	
min cost	BU [14, 15, 16]	MTBDD [17] C-BU [18]	BU [4]	PTA [8]	
min time	BU [14, 19]	Petri nets [12]	APH [9] BU [4]	PTA [8]	
min skill	BU [14, 20]	C-BU [18]	BU [4]	—	
max damage	BU [14, 19, 20]	MTBDD [17] DPLL [7]	BU [4]	PTA [8]	
probability	BU [6, 19]	BDD [21] DPLL [7]	APH [9]	I/O-IMC [5]	
Pareto fronts	BU [22, 19]	С-ВU [11]	OPEN PROBLEM	PTA [8]	
Any of the above	Algo. 1: BU _{SAT}	Algo. 2: BDD _{DAG}	Algo. 5: BU _{DAT}	OPEN PROBLEM	
k-top metrics	BU-projection [14]	ojection [14] Algo. 3: BDD shortest_paths OPEN PROBLEM		OPEN PROBLEM	

BU: bottom-up on the AT structure. **APH**: acyclic phase-type (time distribution). **BDD**: binary decision diagram. **MTBDD**: multi-terminal BDD. *C*-**BU**: repeated BU, identifying clones. **DPLL**: DPPL SAT-solving in the AT formula. **PTA**: priced time automata (semantics). **I/O-IMC**: input/output interactive Markov chains (semantics).

	Static	Dynamic
Tree	0 S-tree	O-tree
DAG	❷ S-DAG	D-DAG

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, ${\cal T}$ satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (AT). An *attack tree* is a tuple T = (N(t,ch)) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, ${\cal T}$ satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, ${\cal T}$ satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (Metric). Given an AT and a set V of values:

- 1. an attribution $\alpha \colon BAS \to V$ assigns an attribute value $\alpha(a)$ to each basic attack step a;
- 2. an attack metric $\widehat{\alpha} \colon \mathscr{A}_T \to V$ assigns a value $\widehat{\alpha}(A)$ to an attack A; a security metric $\check{\alpha} \colon \mathscr{S}_T \to V$ assigns a value $\check{\alpha}(\mathcal{S})$ to a suite \mathcal{S} of T.

We let $\check{\alpha}(T) = \check{\alpha}(\llbracket T \rrbracket)$: the metric of an AT is given by its semantics.

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (Metric). Given an AT and a set V of values:

- 1. an *attribution* α : BAS $\rightarrow V$ assigns an *attribute value* $\alpha(a)$ to each basic attack step a;
- 2. an attack metric $\widehat{\alpha} \colon \mathscr{A}_T \to V$ assigns a value $\widehat{\alpha}(A)$ to an attack A; a security metric $\check{\alpha} \colon \mathscr{S}_T \to V$ assigns a value $\check{\alpha}(\mathcal{S})$ to a suite \mathcal{S} of T.

We let $\check{\alpha}(T) = \check{\alpha}(\llbracket T \rrbracket)$: the metric of an AT is given by its semantics.

 α

 $V = \{ 3 , 1 , 4 \}$

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (Metric). Given an AT and a set V of values:

- 1. an attribution $\alpha \colon BAS \to V$ assigns an attribute value $\alpha(a)$ to each basic attack step a;
- 2. an *attack metric* $\hat{\alpha} \colon \mathscr{A}_T \to V$ assigns a value $\hat{\alpha}(A)$ to an attack A; a security metric $\check{\alpha} \colon \mathscr{S}_T \to V$ assigns a value $\check{\alpha}(\mathcal{S})$ to a suite \mathcal{S} of T.

We let $\check{\alpha}(T) = \check{\alpha}(\llbracket T \rrbracket)$: the metric of an AT is given by its semantics.

Definition (AT). An attack tree is a tuple T = (N, t, ch) where:

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the *type* of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (Metric). Given an AT and a set V of values:

- 1. an attribution $\alpha \colon BAS \to V$ assigns an attribute value $\alpha(a)$ to each basic attack step a;
- 2. an attack metric $\hat{\alpha} \colon \mathscr{A}_T \to V$ assigns a value $\hat{\alpha}(A)$ to an attack A; a security metric $\check{\alpha} \colon \mathscr{S}_T \to V$ assigns a value $\check{\alpha}(\mathscr{S})$ to a suite \mathscr{S} of T.

We let $\check{\alpha}(T) = \check{\alpha}(\llbracket T \rrbracket)$: the metric of an AT is given by its semantics.

 $\check{\alpha}(\text{``any }T \text{ attack''}) = 1$

Definition (AT). An attack tree is a tuple T = (N, t, ch) where

- N is a finite set of *nodes*;
- $t: N \to \{BAS, OR, AND, SAND\}$ gives the type of each node;
- $ch: N \to N^*$ gives the sequence of *children* of a node.

Moreover, T satisfies the following constraints:

- (N, E) is a connected DAG, where $E = \{(v, u) \in N^2 \mid u \in ch(v)\};$
- T has a unique root, denoted R_T : $\exists ! R_T \in N$. $\forall v \in N$. $R_T \notin ch(v)$;
- BAS_T nodes are the leaves of : $\forall v \in N$. $t(v) = BAS \Leftrightarrow ch(v) = \varepsilon$.

Definition (Metric). Given an AT and a set V of values:

- 1. an attribution $\alpha \colon BAS \to V$ assigns an attribute value $\alpha(a)$ to each basic attack step a;
- 2. an attack metric $\widehat{\alpha} \colon \mathscr{A}_T \to V$ assigns a value $\widehat{\alpha}(A)$ to an attack A; a security metric $\check{\alpha} \colon \mathscr{S}_T \to V$ assigns a value $\check{\alpha}(\mathscr{S})$ to a suite \mathscr{S} of T.

We let $\check{\alpha}(T) = \check{\alpha}(\llbracket T \rrbracket)$: the metric of an AT is given by its semantics.

Static

Static AT semantics (no order in attacks)

- An **attack** is a set of BAS of the AT: $A \subseteq BAS$
- An attack suite is a set of attacks: $S \subseteq 2^{BAS}$
- A structure function tells if an attack succeeds:

$$\boldsymbol{f_T}(v,A) = \begin{cases} \top & \text{if } t(v) = \mathsf{OR} \quad \text{and } \exists u \in ch(v). f_T(u,A) = \top, \\ \top & \text{if } t(v) = \mathsf{AND} \text{ and } \forall u \in ch(v). f_T(u,A) = \top, \\ \top & \text{if } t(v) = \mathsf{BAS} \text{ and } v \in A, \\ \bot & \text{otherwise.} \end{cases}$$

Static AT semantics (no order in attacks)

- An **attack** is a set of BAS of the AT: $A \subseteq BAS$
- An attack suite is a set of attacks: $S \subseteq 2^{BAS}$
- A structure function tells if an attack succeeds:

$$\boldsymbol{f_T}(v,A) = \begin{cases} \top & \text{if } t(v) = \mathsf{OR} \quad \text{and } \exists u \in ch(v).f_T(u,A) = \top, \\ \top & \text{if } t(v) = \mathsf{AND} \text{ and } \forall u \in ch(v).f_T(u,A) = \top, \\ \top & \text{if } t(v) = \mathsf{BAS} \text{ and } v \in A, \\ \bot & \text{otherwise.} \end{cases}$$

• The semantics of T is the suite of all minimal successful attacks:

 $\llbracket T \rrbracket = \{ A \subseteq BAS \mid f_T(A) \land A \text{ is minimal} \}$

Theorem: computing $[\![T]\!]$ is an $\ensuremath{\mathsf{NP-complete}}$ problem

Static AT metrics

- An **attribute domain** is a tuple $D = (V, \nabla, \Delta)$ where:
 - $\nabla: V^2 \to V$ is a **disjunctive** operator $\left. \right\}$ associative
 - $\Delta: V^2 \to V$ is a **conjunctive** operator $\int_{-\infty}^{\infty} commutative$

$$[T] = \{\{b\}, \{a, c\}\}$$

Static AT metrics

- An **attribute domain** is a tuple $D = (V, \nabla, \Delta)$ where:
 - $\nabla: V^2 \to V$ is a **disjunctive** operator associative
 - $\Delta: V^2 \to V$ is a **conjunctive** operator

associative & commutative

Metric	V	\bigtriangledown	\triangle
min cost	\mathbb{N}_{∞}	min	+
min time	\mathbb{N}_{∞}	\min	+
min skill	\mathbb{N}_{∞}	\min	\max
max challenge	\mathbb{N}_{∞}	\max	\max
max damage	\mathbb{N}_{∞}	\max	+
discrete prob.	$[0,1]_{\mathbb{Q}}$	max	*
continu. prob.	$\mathbb{R} \to [0,1]_{\mathbb{Q}}$	max	*

$$[T] = \{\{b\}, \{a, c\}\}$$

5/12

commutative

Carlos E. Budde

Static AT metrics

- An **attribute domain** is a tuple $D = (V, \nabla, \Delta)$ where:
 - $\nabla: V^2 \to V$ is a **disjunctive** operator associative
 - $\Delta: V^2 \to V$ is a **conjunctive** operator
- The metric for a static AT T, attribution α , and domain D is:

$$\boldsymbol{\alpha}(T) = \bigvee_{\substack{A \in \llbracket T \rrbracket}} \underbrace{\bigwedge_{a \in A}}_{\widehat{\alpha}} \alpha(a)$$

$$\prod_{a \in A} \widehat{\alpha}$$

$$\llbracket T \rrbracket = \{\{b\}, \{a, c\}\}$$

Metric	V	\bigtriangledown	\triangle
min cost	\mathbb{N}_{∞}	min	+
min time	\mathbb{N}_{∞}	\min	+
$\min skill$	\mathbb{N}_{∞}	\min	\max
max challenge	\mathbb{N}_{∞}	\max	\max
max damage	\mathbb{N}_{∞}	\max	+
discrete prob.	$[0,1]_{\mathbb{Q}}$	\max	*
continu. prob. I	$\mathbb{R} \to [0,1]_{\mathbb{Q}}$	\max	*

Static AT metrics

- An **attribute domain** is a tuple $D = (V, \nabla, \Delta)$ where:
 - $\nabla: V^2 \to V$ is a **disjunctive** operator associative
 - $\Delta: V^2 \to V$ is a **conjunctive** operator $\begin{cases} \& \\ commutative \end{cases}$
- The metric for a static AT T, attribution α , and domain Dis: $\check{\alpha}(T) = \bigvee \land \alpha(a)$

$$\underbrace{A \in \llbracket T \rrbracket}_{\check{\alpha}} \underbrace{a \in A}_{\widehat{\alpha}}$$

$$\llbracket T \rrbracket = \{\{b\}, \{a, c\}\}$$

$$\begin{bmatrix} a \ b \ c \end{bmatrix} D = (V, \nabla, \Delta) = (\mathbb{N}, \min, +)$$

$$\downarrow \downarrow \downarrow = \alpha$$

$$\{3, 1, 4\} = V$$

Metric	V	\bigtriangledown	\triangle
min cost	\mathbb{N}_{∞}	\min	+
min time	\mathbb{N}_{∞}	\min	+
$\min skill$	\mathbb{N}_{∞}	\min	\max
max challenge	\mathbb{N}_{∞}	\max	\max
max damage	\mathbb{N}_{∞}	\max	+
discrete prob.	$[0,1]_{\mathbb{Q}}$	\max	*
continu. prob. $\mathbb I$	$\mathbb{R} \to [0,1]_{\mathbb{Q}}$	\max	*

$igvee_{\left\{ \begin{array}{ccc} 3 \end{array}, \end{array} igvee_{\left\{ \begin{array}{ccc} 3 \end{array}, \end{array} } igvee_{\left\{ \begin{array}{ccc} 1 \end{array}, } igvee_{\left\{ \begin{array}{ccc} 4 \end{array} ight\}} = V$

UNIVERSITY OF TWENTE.

Static AT metrics

- An **attribute domain** is a tuple $D = (V, \nabla, \Delta)$ where:
 - $\nabla: V^2 \to V$ is a **disjunctive** operator associative
 - $\Delta: V^2 \to V$ is a **conjunctive** operator

 $A \in \llbracket T \rrbracket \qquad a \in A$

 $[\![T]\!] = \{\{b\}, \{a, c\}\}$

b c $D = (V, \nabla, \Delta) = (\mathbb{N}, \min, +)$

• The metric for a static AT T, attribution α , and domain Dis: $\check{\alpha}(T) = \bigvee \land \alpha(a)$

min cost

METRIC
$$V$$
 ∇ Δ min cost \mathbb{N}_{∞} min+min time \mathbb{N}_{∞} min+min skill \mathbb{N}_{∞} minmaxmax challenge \mathbb{N}_{∞} maxmaxmax damage \mathbb{N}_{∞} max+discrete prob. $[0,1]_{\mathbb{Q}}$ max*continu.prob. $\mathbb{R} \rightarrow [0,1]_{\mathbb{Q}}$ max*

$$\begin{split} \check{\alpha}(T) &= \bigvee_{A \in \llbracket T \rrbracket} \bigwedge_{a \in A} \alpha(a) \\ &= \left(\alpha(b) \right) \lor \left(\alpha(a) \bigtriangleup \alpha(c) \right) \\ &= (1) \min \left(3 + 4 \right) \\ &= 1 \end{split}$$

& commutative

5/12

1 T is a static tree

• Domain $D = (V, \bigtriangledown, \bigtriangleup)$ is a semiring if \bigtriangleup distributes over ∇

S. Mauw & M. Oostdijk: "*Foundations of Attack Trees.*" ICISC 2006. DOI: 10.1007/11734727_17 UNIVERSITY OF TWENTE. 6/12 Carlos E. Budde

1 T is a static tree

• Domain $D = (V, \nabla, \triangle)$ is a semiring if \triangle distributes over ∇

S. Mauw & M. Oostdijk: "Foundations of Attack Trees." ICISC 2006. DOI: 10.1007/11734727_17

BU_{SAT} algorithm, linear in TInput: S-tree T = (N, t, ch),

node $v \in N$, attribution α , semiring attribute domain $D = (V, \nabla, \Delta).$

(1) T is a static tree

Output: Metric value $\check{\alpha}(T) \in V$.

```
 \begin{array}{l|l} \mbox{if } t(v) = \mbox{OR then} \\ | \mbox{return } \nabla_{u \in ch(v)} \mbox{BU}_{SAT}(T, u, \alpha, D) \\ \mbox{else if } t(v) = \mbox{AND then} \\ | \mbox{return } \Delta_{u \in ch(v)} \mbox{BU}_{SAT}(T, u, \alpha, D) \\ \mbox{else } // t(v) = \mbox{BAS} \\ | \mbox{return } \alpha(v) \\ \end{array}
```

S. Mauw & M. Oostdijk: "Foundations of Attack Trees." ICISC 2006. DOI: 10.1007/11734727_17

UNIVERSITY OF TWENTE.

6/12

Carlos E. Budde

• Domain $D = (V, \nabla, \triangle)$ is a **semiring** if \triangle distributes over ∇

• Domain $D = (V, \nabla, \Delta)$ is a semiring if Δ distributes over ∇ BU_{SAT} algorithm, linear in T

```
Input: S-tree T = (N, t, ch),
         node v \in N.
         attribution \alpha,
         semiring attribute domain
         D = (V, \nabla, \Delta).
```

(1) T is a static tree

Output: Metric value $\check{\alpha}(T) \in V$.

```
if t(v) = OR then
    return \nabla_{u \in ch(v)} \operatorname{BU}_{SAT}(T, u, \alpha, D)
else if t(v) = AND then
    return \bigwedge_{u \in ch(v)} BU_{SAT}(T, u, \alpha, D)
else // t(v) = BAS
    return \alpha(v)
```

```
cryptoattack
 pilfer
             intercept
                          use (weak)
                          plain RSA
notebook
            transactions
  ( n )
                              ( p
```

Get PIN

Theorem. Let T be a static AT with tree structure, α an attribution on V, and $D = (V, \nabla, \Delta)$ a semiring attribute domain. Then $\check{\alpha}(T) = \mathrm{BU}_{\mathrm{SAT}}(T, R_T, \alpha, D).$

 ∇

Λ

S. Mauw & M. Oostdijk: "Foundations of Attack Trees." ICISC 2006. DOI: 10.1007/11734727 17

UNIVERSITY OF TWENTE

6/12

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

```
min
                                                                                                                                                    min
BDD_{SAT} algorithm, linear in B_T
                                                                                                               b < a < c
Input: BDD B_T = (W, Low, High, Lab),
           node w \in W,
                                                                                                                                   \{3, 1, 4\}
           attribution \alpha,
                                                                                                 D = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}) = (\operatorname{cost}, \min, +, \infty, 0)
           semiring attribute domain
           D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}).
Output: Metric value \check{\alpha}(T) \in V.
                                                                                               BDD_{SAT}(w_b) =
                                                                 0
if Lab(w) = 0 then
                                                                            0 = 1_{\wedge}
                                                       1_{\nabla} = \infty
    return 1_{\nabla}
else if Lab(w) = 1 then
    return 1_{\wedge}
else // either do Lab(w) = v \in BAS, or not
    return (\alpha(Lab(w)) \bigtriangleup \cdots
      \cdots \text{BDD}_{\text{SAT}}(B_T, High(w), \alpha, D_*))
      \forall \text{ BDD}_{SAT}(B_T, Low(w), \alpha, D_*)
```

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

```
min
BDD_{SAT} algorithm, linear in B_T
                                                                                                               b < a < c
Input: BDD B_T = (W, Low, High, Lab),
                                                                            \alpha(b) = 1
           node w \in W,
                                                                                                                                   \{3, 1, 4\}
           attribution \alpha,
                                                                                                 D = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}) = (\operatorname{cost}, \min, +, \infty, 0)
           semiring attribute domain
           D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}).
Output: Metric value \check{\alpha}(T) \in V.
                                                                                                BDD_{SAT}(w_b) = (1+0) \min BDD_{SAT}(w_a)
                                                                  0
if Lab(w) = 0 then
                                                        1_{\nabla} = \infty
                                                                            0 = 1_{\wedge}
    return 1_{\nabla}
else if Lab(w) = 1 then
    return 1_{\wedge}
else // either do Lab(w) = v \in BAS, or not
    return (\alpha(Lab(w)) \bigtriangleup \cdots
      \cdots \text{BDD}_{\text{SAT}}(B_T, High(w), \alpha, D_*))
      \forall \text{ BDD}_{SAT}(B_T, Low(w), \alpha, D_*)
```

UNIVERSITY OF TWENTE

min

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

```
BDD_{SAT} algorithm, linear in B_T
Input: BDD B_T = (W, Low, High, Lab),
          node w \in W,
          attribution \alpha,
          semiring attribute domain
          D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}).
Output: Metric value \check{\alpha}(T) \in V.
if Lab(w) = 0 then
    return 1_{\nabla}
else if Lab(w) = 1 then
    return 1_{\wedge}
else // either do Lab(w) = v \in BAS, or not
    return (\alpha(Lab(w)) \bigtriangleup \cdots
     \cdots \text{BDD}_{\text{SAT}}(B_T, High(w), \alpha, D_*))
      \forall \text{ BDD}_{SAT}(B_T, Low(w), \alpha, D_*)
```


$$BDD_{SAT}(w_b) = (1+0) \min BDD_{SAT}(w_a)$$

= (1) min ((3 + BDD_{SAT}(w_c)) min \omega)

UNIVERSITY OF TWENTE

b

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

```
BDD_{SAT} algorithm, linear in B_T
Input: BDD B_T = (W, Low, High, Lab),
          node w \in W,
           attribution \alpha,
           semiring attribute domain
          D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}).
Output: Metric value \check{\alpha}(T) \in V.
if Lab(w) = 0 then
                                                      1_{\nabla} = \infty
    return 1_{\nabla}
else if Lab(w) = 1 then
    return 1_{\wedge}
else // either do Lab(w) = v \in BAS, or not
    return (\alpha(Lab(w)) \bigtriangleup \cdots
      \cdots \text{BDD}_{\text{SAT}}(B_T, High(w), \alpha, D_*))
      \forall \text{ BDD}_{SAT}(B_T, Low(w), \alpha, D_*)
```

min min b < a < c $\{3, 1, 4\}$ $D = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}) = (\operatorname{cost}, \min, +, \infty, 0)$ $BDD_{SAT}(w_b) = (1+0) \min BDD_{SAT}(w_a)$ $= (1) \min \left((3 + \text{BDD}_{\text{SAT}}(w_c)) \min \infty \right)$ $= (1) \min (3 + ((4 + 0) \min \infty)) = 1$

UNIVERSITY OF TWENTE

0

 $\dot{\alpha}(c) = 4$

 $0 = 1_{\wedge}$

• Binary Decision Diagram (BDD) $B_T = (W, Lab, Low, High)$

```
BDD_{SAT} algorithm, linear in B_T
Input: BDD B_T = (W, Low, High, Lab),
          node w \in W,
          attribution \alpha,
          semiring attribute domain
          D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\wedge}).
Output: Metric value \check{\alpha}(T) \in V.
if Lab(w) = 0 then
    return 1_{\nabla}
else if Lab(w) = 1 then
    return 1_{\wedge}
else // either do Lab(w) = v \in BAS, or not
    return (\alpha(Lab(w)) \bigtriangleup \cdots
     \cdots BDD<sub>SAT</sub>(B_T, High(w), \alpha, D_*))
```

```
\forall \text{ BDD}_{\text{SAT}}(B_T, Low(w), \alpha, D_*)
```

Lab, Low, High) b < a < c $\begin{cases} min & min & min \\ b & c \\ \{3, 1, 4\} \\ \\ 0 = (V, \nabla, \Delta, 1_{\nabla}, 1_{\Delta}) = (\text{cost}, \min, +, \infty, 0) \\ \\ \text{BDD}_{SAT}(w_b) = (1+0) \min \text{BDD}_{SAT}(w_a) \\ \\ = (1) \min ((3 + \text{BDD}_{SAT}(w_c)) \min \infty) \\ \\ = (1) \min (3 + ((4+0) \min \infty)) = 1 \end{cases}$

Theorem. Let T be a static AT, B_T its BDD encoding, α an attribution on V, and $D_* = (V, \nabla, \Delta, 1_{\nabla}, 1_{\Delta}))$ a semiring attr. dom. with neutral elements resp. for ∇ and Δ . **Then** $\check{\alpha}(T) = \text{BDD}_{\text{SAT}}(B_T, R_B, \alpha, D_*).$

UNIVERSITY OF TWENTE.

 $1_{\nabla} = \infty$

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins
- The ordering graph $G_T = (BAS_T, \rightarrow)$ of a dynamic AT $a \prec b \land b \prec a$ has the edge $a \rightarrow b$ iff $\exists SAND(v_1, \dots, v_n)$ s.t. $a \in BAS(v_i) \land b \in BAS(v_{i+1})$
- A dynamic AT is **well-formed** if its ordering graph is acyclic

 T_1

 T_2

 T_3

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins
- The ordering graph $G_T = (BAS_T, \rightarrow)$ of a dynamic AT $G_{T_1}, G_{T_2}: a \downarrow b$ has the edge $a \rightarrow b$ iff $\exists SAND(v_1, \dots, v_n)$ s.t. $a \in BAS(v_i) \land b \in BAS(v_{i+1})$
- A dynamic AT is **well-formed** if its ordering graph is acyclic

 T_1

 T_2

 $G_{T_3}:(a) \rightarrow$

 T_3

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins
- The ordering graph $G_T = (BAS_T, \rightarrow)$ of a dynamic AT $G_{T_1}, G_{T_2} \subset b$ has the edge $a \rightarrow b$ iff $\exists SAND(v_1, \dots, v_n)$ s.t. $a \in BAS(v_i) \land b \in BAS(v_{i+1})$
- A dynamic AT is **well-formed** if its ordering graph is acyclic

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins
- The ordering graph $G_T = (BAS_T, \rightarrow)$ of a dynamic AT $G_{T_1}, G_T = (b)$ has the edge $a \rightarrow b$ iff $\exists SAND(v_1, \dots, v_n)$ s.t. $a \in BAS(v_i) \land b \in BAS(v_{i+1})$
- A dynamic AT is **well-formed** if its ordering graph is acyclic
- Attacks $\langle A,\prec\rangle$ defined for well-formed ATs only
 - \prec is a restriction (to $A \subseteq BAS$) of the edges of G_T

 T_3

 T_{2}

 $G_{T_3}:(a) \rightarrow$

- An **attack** is a partially ordered set: $\langle A, \prec \rangle$
 - $a \prec b$ iff $a \in BAS$ must finish before b begins
- The ordering graph $G_T = (BAS_T, \rightarrow)$ of a dynamic AT $G_{T_1}, G_{T_2} \subset b$ has the edge $a \rightarrow b$ iff $\exists SAND(v_1, \dots, v_n)$ s.t. $a \in BAS(v_i) \land b \in BAS(v_{i+1})$
- A dynamic AT is **well-formed** if its ordering graph is acyclic
- Attacks $\langle A,\prec\rangle$ defined for well-formed ATs only
 - \prec is a restriction (to $A \subseteq BAS$) of the edges of G_T
- The semantics of ${\it T}$ is the suite of all minimal successful attacks
 - $\langle A, \prec \rangle$ is minimal iff $A \subseteq BAS$ and $\prec \subseteq BAS^2$ are minimal

- A dynamic attribute domain is a tuple $D = (V, \nabla, \Delta, \triangleright)$
 - $\triangleright: V^2 \to V$ is a sequential operator

For the ordered steps. Also associative & commutative.

$$[T]] = \{ \langle \{ff, w\}, \emptyset \rangle \\, \langle \{w, cc\}, \{w \prec cc\} \rangle \}$$

- A dynamic attribute domain is a tuple $D = (V, \nabla, \Delta, \triangleright)$
 - $\triangleright: V^2 \to V$ is a sequential operator

For the ordered steps. Also associative & commutative.

• The metric for a dynamic AT T, attribution α , and domain D is:

$$\check{\alpha}(T) = \bigvee_{\substack{\langle A, \prec \rangle \in \llbracket T \rrbracket \\ \check{\alpha}}} \bigwedge_{\substack{C \in H_A^{\prec} \\ \widehat{\alpha}}} \bigvee_{\substack{a \in C \\ \check{\alpha}}} \alpha(a)$$

$$\begin{bmatrix} \mathbf{Pick pocket} \\ \mathbf{Pick pocket} \\ \mathbf{T} \end{bmatrix} = \{ \langle \{ff, w\}, \varnothing \rangle \\, \langle \{w, cc\}, \{w \prec cc\} \rangle \}$$

- A dynamic attribute domain is a tuple $D = (V, \nabla, \Delta, \triangleright)$
 - $\triangleright: V^2 \to V$ is a sequential operator

For the ordered steps. Also associative & commutative.

• The metric for a dynamic AT T, attribution α , and domain D is:

$$\begin{aligned} \boldsymbol{\alpha}(\mathbf{I}) &= \bigvee_{\substack{\langle A, \prec \rangle \in \llbracket T \rrbracket}} \underbrace{\Delta}_{\substack{C \in H_A^{\prec}}} \underbrace{\boldsymbol{\beta} \in C}_{\substack{a \in C}} \alpha(a) \\ & \underbrace{\langle A, \prec \rangle \in \llbracket T \rrbracket}_{\hat{\alpha}} \underbrace{\mathcal{C} \in H_A^{\prec}}_{\hat{\alpha}} \underbrace{\mathcal{C} \in H_A^{\lor}}_{\hat{\alpha}} \underbrace{\mathcal{C} \in H_A^{\lor}}_{\hat{\alpha}$$

(f) (w) (c) $D = (V, \nabla, \Delta, \triangleright) = (\mathbb{N}, \min, \max, +)$ { 3 , 15 , 1 } min time

- A dynamic attribute domain is a tuple $D = (V, \nabla, \Delta, \triangleright)$
 - $\triangleright: V^2 \to V$ is a sequential operator

For the ordered steps. Also associative & commutative.

• The metric for a dynamic AT T, attribution α , and domain D is:

$$\begin{split} \tilde{\boldsymbol{\alpha}}(\boldsymbol{T}) &= \bigvee_{\substack{\langle A, \prec \rangle \in \llbracket T \rrbracket}} \bigwedge_{\widehat{\alpha}} \bigotimes_{\alpha \in C} \alpha(a) \\ & \overbrace{\alpha}^{E(\boldsymbol{X}) \leftarrow \llbracket T \rrbracket} \bigotimes_{\alpha \in C} \bigotimes_{\alpha \in C} \alpha(a) \\ & \overbrace{\alpha}^{F(\boldsymbol{X}) \leftarrow \llbracket T \rrbracket} \bigotimes_{\alpha \in C} \bigotimes_{\alpha \in C} \alpha(a) \\ & \llbracket T \rrbracket = \{ \langle \{ff, w\}, \varnothing \rangle \\ & , \langle \{w, cc\}, \{w \prec cc\} \rangle \} \\ & \blacksquare \\ \boldsymbol{T} \end{split} = \{ \langle \{ff, w\}, \varnothing \rangle \\ & , \langle \{w, cc\}, \{w \prec cc\} \rangle \} \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \prec) \in \llbracket T \rrbracket}{\longrightarrow}} \bigotimes_{C \in H_{A}^{\prec}} \bigotimes_{a \in C} \alpha(a) \\ & = \left(\alpha(ff) \bigtriangleup \alpha(w) \right) \bigtriangledown \left(\alpha(w) \rhd \alpha(cc) \right) \\ & = \left(3 \max 15 \right) \min \left(15 + 1 \right) \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \prec) \in \llbracket T \rrbracket}{\longrightarrow}} \bigotimes_{a \in C} \alpha(a) \\ & = \left(\alpha(ff) \bigtriangleup \alpha(w) \right) \bigtriangledown \left(\alpha(w) \rhd \alpha(cc) \right) \\ & = \left(3 \max 15 \right) \min \left(15 + 1 \right) \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \prec) \in \llbracket T \rrbracket}{\longrightarrow}} \bigotimes_{\alpha \in C} \alpha(a) \\ & = \left(\alpha(ff) \bigtriangleup \alpha(w) \right) \bigtriangledown \left(\alpha(w) \rhd \alpha(cc) \right) \\ & = \left(3 \max 15 \right) \min \left(15 + 1 \right) \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \prec) \in \llbracket T \rrbracket}{\longrightarrow}} \bigotimes_{\alpha \in C} \alpha(a) \\ & = \left(\alpha(ff) \bigtriangleup \alpha(w) \right) \bigtriangledown \left(\alpha(w) \rhd \alpha(cc) \right) \\ & = \left(3 \max 15 \right) \min \left(15 + 1 \right) \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \prec) \in \llbracket T \rrbracket}{\longrightarrow}} \bigotimes_{\alpha \in C} \alpha(a) \\ & = \left(\alpha(ff) \bigtriangleup \alpha(w) \right) \lor \left(\alpha(w) \rhd \alpha(cc) \right) \\ & = \left(3 \max 15 \right) \min \left(15 + 1 \right) \\ & \blacksquare \\ \boldsymbol{T} \Biggr) \underset{\alpha \in C}{\overset{(A, \varkappa) \in \llbracket T \rrbracket}{\longrightarrow}} \underset{\alpha \in C}{\overset{(A, \varkappa) \in \llbracket T \rrbracket}{\boxtimes}} \underset{\alpha \in C}{\overset{(A, \varkappa) \in \rrbracket}{\boxtimes}} \underset{\alpha \in C}{\overset{(A, \varkappa) \in \rrbracket}{\boxtimes}} \underset{\alpha \in T \\{(A, \varkappa) \in \amalg \in \rrbracket}{\boxtimes} \underset{\alpha \in C}{\overset{(A, \varkappa) \in \llbracket T \rrbracket}{\boxtimes}} \underset{\alpha \in C}{\overset{(A, \varkappa) \in \amalg \\{(A, \varkappa) \in \amalg \\{(A, \varkappa) \in \rrbracket}}} \underset{\alpha \in C}{\underset{\alpha \in \Box \\{(A, \varkappa) \in \amalg \\{(A, \varkappa) \in \amalg$$

• $D = (V, \nabla, \Delta, \triangleright)$ is a semiring if Δ distributes over ∇ , and \triangleright over ∇ and Δ

• $D = (V, \nabla, \Delta, \triangleright)$ is a semiring if Δ distributes over ∇ , and \triangleright over ∇ and Δ

```
BU_{DAT} algorithm, linear in T
Input: S-tree T = (N, t, ch),
          node v \in N.
           attribution \alpha,
           semiring dynamic attr. dom.
           D = (V, \nabla, \Delta, \rhd).
Output: Metric value \check{\alpha}(T) \in V.
if t(v) = OR then
    return \bigvee_{u \in ch(v)} \operatorname{BU}_{\operatorname{DAT}}(T, u, \alpha, D)
else if t(v) = AND then
    return \Delta_{u \in ch(v)} \operatorname{BU}_{DAT}(T, u, \alpha, D)
else if t(v) = SAND then
    return \triangleright_{u \in ch(v)} BU_{DAT}(T, u, \alpha, D)
else // t(v) = BAS
  return \alpha(v)
```

• $D = (V, \nabla, \Delta, \triangleright)$ is a semiring if Δ distributes over ∇ , and \triangleright over ∇ and Δ

$\mathtt{BU}_{\mathtt{DAT}}$ algorithm, linear in T

Input: S-tree T = (N, t, ch), node $v \in N$, attribution α , semiring dynamic attr. dom. $D = (V, \nabla, \Delta, \triangleright)$. **Output:** Metric value $\check{\alpha}(T) \in V$.

$$\begin{array}{l|l} \mbox{if} & t(v) = \mbox{OR then} \\ | & \mbox{return} \ensuremath{\bigtriangledown}_{u \in ch(v)} \mbox{BU}_{\text{DAT}}(T, u, \alpha, D) \\ \mbox{else if} & t(v) = \mbox{AND then} \\ | & \mbox{return} \ensuremath{\bigtriangleup}_{u \in ch(v)} \mbox{BU}_{\text{DAT}}(T, u, \alpha, D) \\ \mbox{else if} & t(v) = \mbox{SAND then} \\ | & \mbox{return} \ensuremath{\vartriangleright}_{u \in ch(v)} \mbox{BU}_{\text{DAT}}(T, u, \alpha, D) \\ \mbox{else} & \mbox{if} & t(v) = \mbox{BAS} \\ | & \mbox{return} \ensuremath{\alpha}(v) \\ \end{array}$$

$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

• $D = (V, \nabla, \Delta, \triangleright)$ is a semiring if Δ distributes over ∇ , and \triangleright over ∇ and Δ

$\mathtt{BU}_{\mathtt{DAT}}$ algorithm, linear in T

Input: S-tree T = (N, t, ch), node $v \in N$, attribution α , semiring dynamic attr. dom. $D = (V, \nabla, \Delta, \triangleright)$. **Output:** Metric value $\check{\alpha}(T) \in V$.

$$\begin{array}{l|l} \mbox{if} & t(v) = \texttt{OR} \ \mbox{then} \\ & | \ \mbox{return} \ \nabla_{u \in ch(v)} \ \texttt{BU}_{\texttt{DAT}}(T, u, \alpha, D) \\ \mbox{else if} & t(v) = \texttt{AND} \ \mbox{then} \\ & | \ \mbox{return} \ \Delta_{u \in ch(v)} \ \texttt{BU}_{\texttt{DAT}}(T, u, \alpha, D) \\ \mbox{else if} & t(v) = \texttt{SAND} \ \mbox{then} \\ & | \ \mbox{return} \ \triangleright_{u \in ch(v)} \ \texttt{BU}_{\texttt{DAT}}(T, u, \alpha, D) \\ \mbox{else} \ \mbox{//} \ t(v) = \texttt{BAS} \\ & \ \ \mbox{return} \ \alpha(v) \\ \end{array}$$

Theorem. Let T be a dynamic AT with tree structure, α an attribution on V, and $D = (V, \nabla, \Delta, \triangleright)$ a semiring dyn. attr. dom. **Then** $\check{\alpha}(T) = \text{BU}_{\text{DAT}}(T, R_T, \alpha, D).$

4 T is a dynamic DAG

4 T is a dynamic DAG

$$\check{\alpha}(T) = \bigvee_{\langle A, \prec \rangle \in \llbracket T \rrbracket} \bigwedge_{C \in H_A^{\prec}} \bigvee_{a \in C} \alpha(a)$$

[T**]** can be computed from the ordering graph G_T and the semantics of the static transform T'

4 T is a dynamic DAG

Else: extend **sequential BDDs** for attack metrics?

- An S-BDD considers all combinations of descendants of SAND gates
- Combinatorial explosion on top of exponential explosion :'(

H. Yu & X. Wu: "A method for transformation from dynamic fault tree to binary decision diagram." (2020) Part O: Journal of Risk and Reliability. DOI: 10.1177/1748006X20974187

Summary of contributions

	Static	Dynamic
Tree	0 S-tree	O-tree
DAG	❷ S-DAG	D-DAG

	0	0	8	4
Metric	Static tree	Static DAG	Static DAG Dynamic tree	
min cost	BU [14, 15, 16]	MTBDD [17] C-BU [18]	BU [4]	PTA [8]
min time	BU [14, 19]	Petri nets [12]	APH [9] BU [4]	PTA [8]
min skill	BU [14, 20]	C-BU [18]	BU [4]	—
max probability	BU [6, 19]	BDD [21] DPLL [7]	APH [9]	I/O-IMC [5]
Any of the above	Algo. 1: BU _{SAT}	Algo. 2: BDD _{DAG}	Algo. 5: BU _{DAT}	OPEN PROBLEM
k-top metrics	BU-projection [14]	Algo. 3: BDD shortest_paths	OPEN PROBLEM	OPEN PROBLEM

ຄ

UNIVERSITY OF TWENTE.

Summary of contributions

				0	0	•	4
	Static	Dynamic	Metric	Static tree	Static DAG	Dynamic tree	Dynamic DAG
Tree			min cost	BU [14, 15, 16]	MTBDD [17] C-BU [18]	BU [4]	PTA [8]
Tree	Tree U S-tree U D-tree	min time	BU [14, 19]	Petri nets [12]	APH [9] BU [4]	PTA [8]	
DAG	❷ S-DAG	4 D-DAG	min skill	BU [14, 20]	C-BU [18]	BU [4]	—
			max probability	BU [6, 19]	BDD [21] DPLL [7]	APH [9]	I/O-IMC [5]
			Any of the above	Algo. 1: BU _{SAT}	Algo. 2: BDD _{DAG}	Algo. 5: BU _{DAT}	OPEN PROBLEM
			<i>k</i> -top metrics	BU-projection [14]	Algo. 3: BDD shortest_paths	OPEN PROBLEM	OPEN PROBLEM

- NP-hard: compute minimal successful attack in static ATs is NP-hard
- BDD_{DAG}: BDD algorithm to compute metrics for static-DAG ATs
- $BDD_{shortest-path}$: algorithm to compute k-top best attacks

Static

Summary of contributions

				0	0	B	4
	Static	Dynamic	Metric	Static tree	Static DAG	Dynamic tree	Dynamic DAG
Tree			min cost	BU [14, 15, 16]	MTBDD [17] C-BU [18]	BU [4]	PTA [8]
Tree	Tree US-tree UD-tree	min time	BU [14, 19]	Petri nets [12]	APH [9] BU [4]	PTA [8]	
DAG	❷ S-DAG	OD-DAG	min skill	BU [14, 20]	C-BU [18]	BU [4]	—
			max probability	BU [6, 19]	BDD [21] DPLL [7]	APH [9]	I/O-IMC [5]
			Any of the above	Algo. 1: BU _{SAT}	Algo. 2: BDD _{DAG}	Algo. 5: BU _{DAT}	OPEN PROBLEM
			<i>k</i> -top metrics	BU-projection [14]	Algo. 3: BDD shortest_paths	OPEN PROBLEM	OPEN PROBLEM

- NP-hard: compute minimal successful attack in static ATs is NP-hard
- BDD_{DAG}: BDD algorithm to compute metrics for static-DAG ATs
- $BDD_{shortest-path}$: algorithm to compute k-top best attacks
- **Poset semantics** (and well-formedness) for dynamic ATs
- BU_{DAT}: Bottom-Up algorithm to compute metrics for dynamic-tree ATs
- Directions to analyse dynamic-DAG ATs (open problem)

UNIVERSITY OF TWENTE.

12/12

Dyn.

Efficient Algorithms for Quantitative Attack Tree Analysis

Carlos E. Budde⁺ & Mariëlle Stoelinga^{+*}

⁺ Formal Methods & Tools, University of Twente, Enschede, The Netherlands
^{*} Dept. of Software Science, Radboud University, Nijmegen, The Netherlands

c.e.budde@utwente.nl
m.i.a.stoelinga@utwente.nl

