Formal Verification of Secure Forwarding Protocols

Tobias Klenze, Christoph Sprenger, David Basin

CSF'21 June 2021

ETHzürich

Contact: tobias.klenze@inf.ethz.ch

The Internet lacks network security

Two parts: (1.) **Routing** (creating & authorising paths), ... С _ D F B

Α

Set of authorized paths

Two parts: (1.) **Routing** (creating & authorising paths), (2.) **Forwarding** (using paths)

Path Authorization: Packets traverse the network only along authorized paths.

Two parts: (1.) **Routing** (creating & authorising paths), (2.) **Forwarding** (using paths)

Challenges for the Verification of Path Authorization

Challenge #1

Challenge #2

Expressiveness to formulate path authorization.

Challenge #3

Our approach: Refinement in Isabelle/HOL.

Arbitrary, **unbo** of authorized pa unbounded pat

No attacker

Distributed, colluding **Dolev-Yao attacker**

Cryptographic authenticators

Parametrized Verification Framework

V

Property preservation

Contributions:

- Proving security of a class of forwarding protocols
- Insights into protocol class
- Low-effort proofs: Eight instances, only static reasoning, not about transitions

Modelling Forwarding

In (1.), paths are created: one Hop Field HF_i = $\langle \delta_i, \sigma_i \rangle$ per node i.

- δ_i : local forwarding information
- \bullet σ_i : authenticator (e.g., MAC)

In (2.), Alice embeds a path.

validity of authenticator.

How to define the authenticator?

Authenticators must protect subsequent path

 $\sigma_{i} = MAC_{Key(i)} \langle \delta_{i}, \sigma_{i+1} \rangle$ \perp for last hop field

$$\begin{split} \sigma_{A} &= MAC_{Key(A)} \left< \delta_{A}, \sigma_{B} \right> \\ \sigma_{A} &= MAC_{Key(A)} \left< \delta_{A}, MAC \right> \\ \sigma_{A} &= MAC_{Key(A)} \left< \delta_{A}, MAC \right> \end{split}$$

 $extract(\sigma_A) = [\delta_A, \delta_B, \delta_C]$

: fields protected by authenticator σ_i

$\begin{array}{l} C_{\text{Key(B)}}\langle \delta_{\text{B}}, \sigma_{\text{C}} \rangle \rangle \\ C_{\text{Key(B)}}\langle \delta_{\text{B}}, \text{MAC}_{\text{Key(C)}}\langle \delta_{\text{C}}, \perp \rangle \rangle \rangle \end{array}$

Authenticators must protect subsequent path

Parameter

- Three protocol parameters
- Five static conditions

: fields protected by authenticator σ_i

- **Parametrized Concrete Model**

Three verification challenges:

Arbitrary, **unbounded** sets of authorized paths **Expressiveness** for path authorization

Future work: Whole Internet architectures to verify!

Contact: tobias.klenze@inf.ethz.ch

Low effort proofs for new protocol variants

We solved these challenges via **refinement** and parametrization in Isabelle/HOL