Secure Compilation of Constant-Resource Programs

Gilles Barthe Sandrine Blazy Rémi Hutin David Pichardie

institute 8_8

rennes

eIC IRISA &zz&’af—“NﬁEﬁﬁﬁEm

EEEEEEEEEEEEEEEEEEEEEEEEEE

Cryptographic Constant-time (CCT)

AN W] R MO\
C4 == PVA
: . i Lo G € K

» CCT programs must not perform:
« Secret-dependent branches o (O O
» Secret-dependent memory accesses

» Popular and used by cryptographers:
« Several cryptographic implementations: AES, Curve25519, RSA, TLS, ...

Observational Non-interference (ONI)

ONI: generic policy for side-channel leakage. [CSF'18] . leakage
» CCT can be defined as an instance of ONI £
U /
(p,oyl o

e Imperative language with big-step semantics: ;
P guag g 9 program -

" Input/output

* 0, ~ 0y both states share the same values for public
values and may differ on secret values .
(indistinguishability). ONI(p):

tq
(p,0.) U o]

« A program p is ONI If any pair of executions starting
from indistinguishable states g, ~ o, produce the)
same leakage. ¢,

(p,0,) U o,

implies ¢, = 7,

 Intuitively: leakage does not reveal secrets.

[CSF'18] Gilles Barthe et al. “Secure Compilation of Side-channel Countermeasures: the case of Cryptographic Constant-Time”

Instances of ONI

« CCT is formally defined as an instance of ONI. | ¢ In our work, we consider a different instance

of ONI, known as Constant-Resource (CR) or

Time-balancing.

» Leakage ¢: list of boolean guards and memory
accesses.

* Leakage ¢: amount of resources consumed

| | during an execution (€ N).
« Example: semantics rule of if-statement:

» Every construct of the language consumes a
constant amout of resources. Example rule
3 for sequence:

(e,o) U true (py,0) o

true - ¢ ill , , ﬁlz .
(if () {p1}{p2} o) U o (p1,0) Vo (py,0") U o
2, +4,

((p1;p2),00 U d”

Constant-Resource: a relaxation of CCT

* Has been used to implement cryptographic primitive.
Example from s2n, Amazon’s implementation of TLS. [VSTTE 18]

Consider a secret value x, bounded: 0 < x < 32. Function update consumes 1 resource.

Repair repeat (x) { update(); }
repeat (x update(); >
P (x) 1 up s) } repeat (32-x) { dummyUpdate(); }

Consumes x resources Consumes 32 resources

* More generally, secret-dependent branch are allowed, as long as branches are balanced.
« CCTECR

[VSTTE’18] Athanasiou, Konstantinos, et al. "Sidetrail: Verifying time-balancing of cryptosystems."

Preservation of ONI during compiler transformation

_ Cryptographic Constant-Time Constant-Resource

[POPL'00] Johan Agat. “Transforming out
timing leaks”.

[ISSTA'18] Meng Wu et al. “Eliminating
Enforcement / [PLDI"19] Sunjay Cauligi et al. “FaCT: a DSL for timing side-channel leaks using program
Program repair timing-sensitive computation”. repair”.

[S&P. 2017] Mario Dehesa-Azuara et al.
“Verifying and synthesizing constant-
resource implementations with types”.

[CCSM7] José Bacelar Almeida et al. “Jasmin:
High-assurance and high-speed cryptography”.
i ?
Preservation [POPL'20] Gilles Barthe et al. “Formal)
verification of a constant-time preserving C
compiler”.

Challenges

« Existing proof techniques for preservation

of other ONI be applied.
« CR-security relies on fragile
between resources - could easily be * The property does not
broken by common optimizations. hold for resource leakage (N).

bi+01=4,+¢, =L =0, N¥] =1,
« Our solution: a more flexible security
policy CR", « Intuitively:

CR(p1;p2) # CR(p1) A CR(p3)

1. Example
2. Motivate and introduce CR¥

3. Present our methodology

Example: Common Subexpression Elimination (CSE)

Resource model: if (cond) { Not balanced
00 anymore
addition costs 1 x = axb; O ’

multiplication costs 2 y = x+c+d;
} else { _
if (cond) { X = a+b: 0 : padding operator
CSE n
X = axb; - y = x#c*d; 7 (d(n), o)l o
y = (axb)+c+d; } -
e if (cond) { if (cond)
X = a+b;) ‘ 6(2-1);
y = (a+b)xcx*d; Lz < X = axb; min < X = axb;
} . y = x+c+d; y = X+c+d;
QO } else { } else {

2 additions and 2 g/l/);
multiplications in both X = a+b; X = a+b;
branches - balanced 0O°

still balanced, y = x*Cx*d; y = X*Cx*d;

thanks to padding

A secret-aware compiler

* Our approach introduces padding and restricts the compiler
— only necessary in secret-dependent branches.

* First approach: security type-system.

» Pros: keeps precise track of security levels.
« Cons: does not scale to realistic compiler.

« Our approach: syntactic annotation, called atomic.
Inspired from parallel computing (barriers).

Easily introduced by a previous analysis at source level.
Statically identify high security parts of the program.
Compiler only restricted in annotated parts.

10

Atomic annotations

if (public) {

. Atomic annotation
} else { !

y Flexible policy
if (secret) {|/ . icve
« Restricted (by introducing New policy:
paddmg) logie «_ Expects CR behavior inside
annotations. } else { atomic annotations.
|} | » Elsewhere, secret-dependent
* Unrestricted elsewhere. - . branches are not allowed
if (public) { (CCT-like behavior).
} else {

1

Formal definition of CR*

CR" Is defined as an instance of ONI.

Leakage ¢: ? = (f,q)

/ : resources, CR-like leakage
f: control-flow, list of boolean 1 =

guard, CCT-like leakage

CR#-security expects control-flow and resource consumption to be independent from secrets.

Relaxed by atomic semantics:

(f, q)

,a) 4 o
p.9) . q)a CCT S CR* € CR

(El, o) U o i

CR* is a flexible mix between CCT and CR

Methodology

if (public) {
} else {

}

if (secret) {

} else {

Ui

if (public) {

} else {

}

if (secret) {

} else {

Proved CR*-preserving as
it preserves leakage.

Ui

min

« We decompose a control-flow preserving (CSE, constant prop., ...) transformation T as min o T":

if (public) {
} else {

}

if (secret) {

} else {

Ui

Proved CR#-preserving
(main proof effort).

13

Conclusion

« We presented a security policy called CR?, a flexible mix between CCT and CR,
that relies on atomic annotations.

* We developed a proof methodology to prove that a transformation preserves
CR*, and applied it to generic control-flow preserving transformations.

« All our results are mechanically verified with the Cog proof assistant.

14

