
Secure Compilation of Constant-Resource Programs

Gilles Barthe Sandrine Blazy Rémi Hutin David Pichardie

Cryptographic Constant-timeCryptographic Constant-time (CCT)

• A countermeasure to protect against timing side-channels attacks.

• CCT programs must not perform:
• Secret-dependent branches
• Secret-dependent memory accesses

• Popular and used by cryptographers:
• Several cryptographic implementations: AES, Curve25519, RSA, TLS, …

2

Observational Non-interference (ONI)

• ONI: generic policy for side-channel leakage. [CSF’18]
• CCT can be defined as an instance of ONI

• Imperative language with big-step semantics:

• 𝜎1 ∼ 𝜎2: both states share the same values for public
values and may differ on secret values
(indistinguishability).

• A program 𝑝 is ONI if any pair of executions starting
from indistinguishable states 𝜎1 ∼ 𝜎2 produce the
same leakage.

• Intuitively: leakage does not reveal secrets.

[CSF’18] Gilles Barthe et al. “Secure Compilation of Side-channel Countermeasures: the case of Cryptographic Constant-Time”

𝑝, 𝜎 ⇓
ℓ

𝜎′

leakage

program
Input/output

ONI(𝑝) :

𝑝, 𝜎1 ⇓
ℓ1
𝜎1
′

𝑝, 𝜎2 ⇓
ℓ2
𝜎2
′

∼

implies ℓ1 = ℓ2

3

Instances of ONI

• CCT is formally defined as an instance of ONI.

• Leakage ℓ: list of boolean guards and memory
accesses.

• Example: semantics rule of if-statement:

4

• In our work, we consider a different instance
of ONI, known as Constant-Resource (CR) or
Time-balancing.

• Leakage ℓ: amount of resources consumed
during an execution (∈ ℕ).

• Every construct of the language consumes a
constant amout of resources. Example rule
for sequence:

𝒊𝒇 𝑒 𝑝1 {𝑝2}, 𝜎 ⇓
𝑡𝑟𝑢𝑒 ⋅ ℓ

𝜎′

𝑒, 𝜎 ⇓ 𝑡𝑟𝑢𝑒 𝑝1, 𝜎 ⇓
ℓ

𝜎′

(𝑝1; 𝑝2), 𝜎 ⇓
ℓ1+ℓ2

𝜎′′

𝑝2, 𝜎′ ⇓
ℓ2
𝜎′′𝑝1, 𝜎 ⇓

ℓ1
𝜎′

repeat (x) { update(); }

Constant-Resource: a relaxation of CCT

• Has been used to implement cryptographic primitive.
Example from s2n, Amazon’s implementation of TLS. [VSTTE’18]

Consider a secret value x, bounded: 0 ≤ x ≤ 32. Function update consumes 1 resource.

• More generally, secret-dependent branch are allowed, as long as branches are balanced.

• CCT ⊆ CR

5
[VSTTE’18] Athanasiou, Konstantinos, et al. "Sidetrail: Verifying time-balancing of cryptosystems."

repeat (x) { update(); }

repeat (32-x) { dummyUpdate(); }

Consumes x resources Consumes 32 resources

Repair

Preservation of ONI during compiler transformation

Cryptographic Constant-Time Constant-Resource

Enforcement /
Program repair

[PLDI’19] Sunjay Cauligi et al. “FaCT: a DSL for
timing-sensitive computation”.

[POPL’00] Johan Agat. “Transforming out
timing leaks”.

[ISSTA’18] Meng Wu et al. “Eliminating
timing side-channel leaks using program
repair”.

[S&P. 2017] Mario Dehesa-Azuara et al.
“Verifying and synthesizing constant-
resource implementations with types”.

Preservation

[CCS’17] José Bacelar Almeida et al. “Jasmin:
High-assurance and high-speed cryptography”.

[POPL’20] Gilles Barthe et al. “Formal
verification of a constant-time preserving C
compiler”.

?

6

Challenges

Compilation

• CR-security relies on fragile balance
between resources → could easily be
broken by common optimizations.

• Our solution: a more flexible security
policy CR#.

7

Proof methodology

• Existing proof techniques for preservation
of other ONI cannot be applied.

• The non-cancelation property does not
hold for resource leakage (ℕ).

ℓ1 + ℓ1
′ = ℓ2 + ℓ2

′ ⟹ ℓ1 = ℓ2 ⋀ ℓ1
′ = ℓ2

′

• Intuitively:

𝐶𝑅 𝑝1; 𝑝2 ⇏ 𝐶𝑅 𝑝1 ⋀ 𝐶𝑅(𝑝2)

1. Example

2. Motivate and introduce CR#

3. Present our methodology

Example: Common Subexpression Elimination (CSE)

9

if (cond) {

x = a*b;

y = (a*b)+c+d;

} else {

x = a+b;

y = (a+b)*c*d;

}

if (cond) {

x = a*b;

y = x+c+d;

} else {

x = a+b;

y = x*c*d;

}

CSE

if (cond) {

δ(2);

x = a*b;

y = x+c+d;

} else {

δ(1);

x = a+b;

y = x*c*d;

}

if (cond) {

δ(2-1);

x = a*b;

y = x+c+d;

} else {

δ(1-1);

x = a+b;

y = x*c*d;

}

CSE#

Not balanced
anymore

min

2 additions and 2
multiplications in both
branches → balanced

Still balanced,
thanks to padding

δ : padding operator

δ(𝑛), 𝜎 ⇓
𝑛

𝜎

Resource model:
addition costs 1
multiplication costs 2

A secret-aware compiler

• Our approach introduces padding and restricts the compiler
→ only necessary in secret-dependent branches.

• First approach: security type-system.
• Pros: keeps precise track of security levels.
• Cons: does not scale to realistic compiler.

• Our approach: syntactic annotation, called atomic.
• Inspired from parallel computing (barriers).
• Easily introduced by a previous analysis at source level.
• Statically identify high security parts of the program.
• Compiler only restricted in annotated parts.

10

Atomic annotations

Compiler

• Restricted (by introducing
padding) inside atomic
annotations.

• Unrestricted elsewhere.

11

if (public) {

…

} else {

…

}

if (secret) {

…

} else {

…

}

if (public) {

…

} else {

…

}

Atomic annotation

Flexible policy

• New policy: CR#

• Expects CR behavior inside
atomic annotations.

• Elsewhere, secret-dependent
branches are not allowed
(CCT-like behavior).

Formal definition of CR#

• CR# is defined as an instance of ONI.

• Leakage ℓ:

• CR#-security expects control-flow and resource consumption to be independent from secrets.

• Relaxed by atomic semantics:

12

ℓ = (𝑓, 𝑞)

𝑓: control-flow, list of boolean
guard, CCT-like leakage

𝑞: resources, CR-like leakage

𝑝 , 𝜎 ⇓
(𝜖, 𝑞)

𝜎′

𝑝, 𝜎 ⇓
(𝑓, 𝑞)

𝜎′

CR# is a flexible mix between CCT and CR

CCT ⊆ CR# ⊆ CR

if (public) {

…

} else {

…

}

if (secret) {

δ(T3-T); …

} else {

δ(T4-T); …

}

Methodology

• We decompose a control-flow preserving (CSE, constant prop., …) transformation 𝑇 as 𝑚𝑖𝑛 ∘ 𝑇
#:

13

if (public) {

…

} else {

…

}

if (secret) {

…

} else {

…

}

if (public) {

δ(T1); …

} else {

δ(T2); …

}

if (secret) {

δ(T3); …

} else {

δ(T4); …

}

𝑇
#

𝑚𝑖𝑛

Proved CR#-preserving as
it preserves leakage.

Proved CR#-preserving
(main proof effort).

Conclusion

• We presented a security policy called CR#, a flexible mix between CCT and CR,
that relies on atomic annotations.

• We developed a proof methodology to prove that a transformation preserves
CR#, and applied it to generic control-flow preserving transformations.

• All our results are mechanically verified with the Coq proof assistant.

14

