Language Support for Secure Software

Development with Enclaves

Aditya Oak TU Darmstadt

Amir M. Ahmadian KTH Royal Institute of Technology
Musard Balliu KTH Royal Institute of Technology
Guido Salvaneschi ~ University of St.Gallen

Trusted Execution Environments (TEEs)

Recent Privacy Enhancing Technology

‘Enclaves’ protected by hardware

* Enclaves are opaque to the OS

Apple Platform
arm Security

TRUSTZONE

N

* Private computations on cloud hosts

Programming with TEEs

Application

datain

Code outside

Enclave
enclave

<

result

Problems with using TEEs

* Manual application partitioning
 Program the enclave — non-enclave interface

* Application partitioning may not preserve security guarantees

Compiler can do these !!!

Je: Language support for programming with enclaves

 Language-level abstractions
 Automatic application partitioning
e A static type system for information flow control

* Robustness guarantees against active attackers

Je Programming Model: Language-level abstractions

PasswordChecker.java
4)
Annotations: ((@nclave)
Encl 2 class PasswordChecker {
@Enclave X
@Gateway 4 StatiC S‘trlng paSS\NUrd = iy
5
@Secret s (@ateway
7 pubtit static boolean checkPassword(String guess) {
8 String guesskE = endorse(guess);
9 boolean result = guessE.equals(password);
10 return declassify(result);
Methods: b y{result)
endorse 2}
. _ J
declassify
~ Main java f——m-—

class Main {
public static void main(String[] args) {
String guess = ... // read guess from stdin
PasswordChecker.checkPassword(guess) ;

}

= Y . I S

}

Je: Program partitioning and attacker Model

Outside the
////////)' enclave
% —— J. compiler I Non-enclave attacks
Jg code \

Enclave

Je: Attacker models

o Stronger Attackers

o They can modify data- and code-memory

o Robustness

o Controlling the release of secret data (declassification)

1. Data-memory attacker (HAA)

2. Data- and code-memory attacker (HRAA)

Je: Attacker models

PasswordChecker.java
e N
O HAA AttaCker 1 @Enc]_ave
2 class PasswordChecker {
3 @ecret static String password;
* In control of data-memory s
5 @Gateway
. 6 public static boolean checkPassword(String guess) {
* Change data outside of enclave | - boolean result = guess.equals(password);
8 return declassify(result);
o } }
= Parameters of gateways 4 J
- Main.java N
1 class Main {
> public static void main(String[] args) {
3 String guess = ... // read guess from stdin
4 PasswordChecker.checkPassword(guess) ;
s})

Je: Attacker models

Robustness under HAA

program S[e] is robust w.r.t HAA attacker A if for all 4, 05, A, dy:
N 5 (Sldy],01) =4 N +5(S[dq],03) =
N s (Sld,], 01) =a N k5 (Sld;], 02)

o We use holes ¢ outside of the enclave to capture the effects of this attacker
o S[e] is the program

o Attacker’s code a will be placed in these holes
* It can only affect data-memory

10

Je: Attacker models

oRobustness under HAA

- PasswordChecker.java N
1 @Enclave
e Parameters of gateways are 2 class PasswordChecker {
) 3 @ecret static String password;
under attacker’s control 4
5 @Gateway
e Th ey are untrusted 6 public static boolean checkPassword(String guess) {
7 boolean result = guess.equals(password);
* Untrusted values should not N return declassify(result);
9
affect declassification N)
- Main.java N
1 class Main {
2 public static void main(String[] args) {
3 String guess = ... // read guess from stdin
4 PasswordChecker.checkPassword(guess) ;
s})

11

Je: Attacker models

oEnforcing Robustness under HAA

* Type system ensures that:

* Only trusted values can be declassified

* Declassification can only happen under trusted context

Dkse: (6,d) [LE2(S,T)| [peC(@,T)| d@)=FE
pe, I 11 Fs x := declassify(e) : F[m — £ (P, T)],H[:L‘ o T]

T-DECLASSIFY

12

Je: Attacker models

Theorem 1
If pc, T, 11 k5 S[e]: ', I1' then S[*] satisfies robustness under HAA.

o A well-typed program pc, I, IT -5 S[¢]: "', IT' is robust against HAA attacker.

13

Je: Attacker models

oHRAA Attacker

* |In control of data-memory and code-memory

* Can change data and control flow outside of
enclave
= Parameters of gateways
= QOrder of calling gateways

= Frequency of calling gateways

1 @Enclave
2 class FooClass {

20
21

@Secret static int secretl, secret2;
static boolean releaseTrigger = false;

@Gateway

public static void bar() {
releaseTrigger = true;

}

@Gateway
public static int foo() {
int res = 0;
if (releaseTrigger) {
res = declassify(secretl);

}
else {
res = declassify(secret2);
}
return res;

2 } }

14

Je: Attacker models

oRobustness under HRAA

* foo;barorbar; foo
 Can lead to different values

* Attacker learns more by changing the order of

gateway calls

1 @Enclave
2 class FooClass {

ol B T = T V. T S VN

10
11
12
13
14
15
16
17
18
19
20
21

@Secret static int secretl, secret2;
static boolean releaseTrigger = false;

@Gateway

public static void bar() {
releaseTrigger = true;

}

@Gateway
public static int foo() {
int res = 0;
if (releaseTrigger) {
res = declassify(secretl);

}
else {
res = declassify(secret2);
}
return res;

2 } }

15

Je: Attacker models

Program Under HRAA
We define the program under HRAA attacker as a sequence of
gateway calls:

S'[¢] ::= Si[e]; Sil[¢] | [¢]; x = C.m(p)

o S'[¢] models attacker’s control over code-memory

o Holes ¢ and attacker’s code a model attacker’s control over data-memory

16

Je: Attacker models

Robustness under HRAA

Program S[e] is robust w.r.t. HRAA attacker A if for all o4, 0,, a4, a
and for all S'[e]:

N ks (Sla,]l, o1) =4 N k5 (S[a,], 02) =
N ks (S'[a,], 01) =4 N 5 (S'[d;], 02)

o S'[¢] is the attacker program
* A list of gateway calls

17

Je: Attacker models

o We extend the type system to account for this attacker.

Theorem 2

Ifpc, T, 11 k5 S[¢]: T, II" with regard to £ and G°, then S[e]
satisfies robustness under HRAA.

18

More Investigated Features

e Endorsement
* Flow Sensitive Variables

* Delayed Declassification

19

Je Implementation and Workflow

A
— > Static slecyrlty —>» Conversion to Jif — | Jif Compiler
analysis

\]E COde Intel SGX
Enclave code —> JVM
Enclave interface
(Java RMI) I
\ Regular
Non-enclave code —» VM

Phase 2

20

Evaluation

e Password Checker: Password stored inside the enclave

 Updatable-Password Checker: Password inside the enclave,
modifiable from outside

 Medical Data Processing: Decrypt and process data inside the
enclave

21

* A programming model for secure
programming with enclaves

e Abstractions for code placement
and data security attributes

* Type system to defend against
strong realistic attacks

https://prg-grp.github.io/je-lang

More in the paper

Language Support for Secure Software De

pment

with Enclaves

Aditya Oak Amir M. Ahmadian

Musard Balliu Guido Salvaneschi

TU Darmstadt KTH Royal Institute of Technology ~ KTH Royal Institute of Technology — University of St.Gallen

Ab: C

is a promi
for securing code and data-in-use on untrusted host

integration of enclave programming into

e.g., the cloud. Many hardware vendors offer different imple-
mentations of Trusted Execution Environments (TEEs). A TEE
is a hardware protected execution environment that allows
i i i ions over sensitive data on
untrusted hosts. Despite the appeal of achieving strong security
against low-level k two hinder
the adoption of TEEs. First, developing software in high-level
managed languages, e.g., Java or Scala, taking advantage of
existing TEEs is complex and error-prone. Second, partitioning
an application into components that run inside and outside a
TEE may break application-level security policies, resulting in
an insecure application when facing a realistic attacker.

In this work, we study both these challenges. We present
JE, a ing model that integrates a TE
abstracting away low-level programming details such as
ization and loading of data into the TEE. Jr only requires
developers to add annotations to their programs to enable the
execution within the TEE. Drawing on information flow control,
we develop a security type system that checks confidentiality and
integrity policies against realistic attackers with full control over
the code running outside the TEE. We formalize the security
type system for the Jz core and prove it sound for a semantic
characterization of security. We implement Jz and the security
type system, enable Java programs to run on Intel SGX with
strong security guarantees. We evaluate our approach on use
cases from the literature, including a battleship game, a secure
event processing system, and a popular processing framework
for big data, showing that we correctly handle complex cases of
partitioning, information flow, declassification, and trust.

Index Terms—Information Flow Control, Trusted Execution
Envi Robust D i ion, Security Type System

I. INTRODUCTION

Confidential computing includes recent technologies to pro-
tect data-in-use through isolating computations to a hardware-
based Trusted Execution Environment (TEE). TEEs provide
hardware-supported enclaves to protect data and code from
the system software. Over the past few years, an array of TEE
designs has been developed, including Intel’s Software Guard
Extensions (SGX) 11, [2], ARM TrustZone [3], MultiZone [4]
and others [3], [6], [7], (8], (9]). Using TEEs, data can be
loaded securely in plain text and processed at native speed
within an enclave even on a third-party machine. SGX is a
TEE implementation from Intel which has been successfully

software applications remains chall For example, Intel
provides a C/C++ interface to the SGX enclave but no direct
support is ilable for d 1 As managed

languages like Java and Scala are extensively used for

developing distributed applications, developers need to either

interface their programs with the C++ code executing in the

enclave (e.g., using the Java Native Interface [I2]) or compile

their programs to native code (e.g., using Java Native [13])
i many ad s of d envir S

A second aspect concerns security with realistic attackers.
Standard security analysis of code protects against passive
attackers, as common for untrusted/buggy code executing in a
single trusted host [[I4]. Yet, with enclaves, programs run in a
trusted environment within an untrusted host: the attacker can
control the untrusted i to cause additional leaks
of sensitive information through the interface between the
two environments. An active attacker may force the enclave
program to violate the security policy by compromising
the integrity of inputs at the interface or by controlling
the execution order of interface components, e.g., to trigger
execution paths and side effects that were not possible in the
original program. Current research adopts Information Flow
Control (IFC) to ensure that the code within an enclave does
not leak sensitive information to the non-enclave environment
[13), (18], [I7]. This research, however, either takes a limited
view of a passive attacker that only observes the data leaving
the enclave, or it incorporates the effects of an active attacker
into the execution semantics and the security condition,
thus requiring additional verification effort to secure enclave
programs.

These challenges lead us to the following key research
questions addressed by the paper: (a) How to enable seamless
integration of enclaves and managed languages like Java? (b)
What is the right security model for realistic enclave attacks
and how to statically verify the security of enclave programs
with respect to these attacks? (c) How to harden state-of-the-
art IFC tools to verify security in the TEE context? (d) How
to demonstrate feasibility via realistic use c

Accessible and secure confidential computing To address the

22

