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Our View

1. Formal approach is needed 
2. Understanding the impact of a 

compromised sensor is important  
3. Need to reason about relational properties



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

Methodology



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

A threat  
model

Methodology



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

A threat  
model

Two robustness 
properties

Methodology



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

A threat  
model

Two robustness 
properties

An equivalence  
relation

Methodology



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

A threat  
model

Two robustness 
properties

An equivalence  
relation

Two proof 
techniques

Methodology



Contributions
A formal framework to model and analyze 
sensor attacks on cyber-physical systems

A threat  
model

Two robustness 
properties

An equivalence  
relation

Two proof 
techniques

Methodology

Three case studies

Validation



Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P ), and VAR(!2) = VAR(⇠(P )),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P ) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [ � Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �, 
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^  Conjunction
� _  Disjunction
�!  Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL
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Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
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Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
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Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .
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Proof. By induction on the variables in program P [24]. ⇤
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Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .
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Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
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⇠⇠⇠⇣ !2,
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9�
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2 ⌧.(choices; SUB(choices, ⇠)) such that
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0 . . .�
b

p
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Lemma 13 (Projections of a sequence).
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c
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b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [ � Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �, 
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^  Conjunction
� _  Disjunction
�!  Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� Program existance
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t : clock variable
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d

v

a



brake ≡ a := − B

Example Hybrid Program Model 

v : vehicle velocity
d : distance to obstacle

a : acceleration
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t : clock variable
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ctrl ≡ ((accel ∪ brake); t := 0)

d

v

a



accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model 

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)

d

v

a



accel ≡ ?ψ; a := A
brake ≡ a := − B
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a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
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Example Hybrid Program Model 

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)
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v
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accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model 

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

→ [(ctrl; plant)*]

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)
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accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model 

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

→ [(ctrl; plant)*]

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)

d

v

(d > 0)

a
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ds
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Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)
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Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)



accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

→ [(ctrl; plant)*](A ≥ 0 ∧ B ≥ 0 ∧ 2Bdp > v2
p)

dpdp

vp

(dp > 0)

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)



accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

vs := vp; ds := dp;
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Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

ds := dp;



accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

vs := ;* ds := dp;
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Two Robustness Properties

 is robustly safe: if  is safe, then  is safeP P PAttacked

P PAttacked

(ϕpre → [P]ϕsafe) (ϕpre → [PAttacked]ϕsafe)→

Robustness of high-integrity state

Robustness of Safety ≠ Safety
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H-Equivalence of Two Programs
and P1 = α * P2 = β *

ω0

ω1

ω2

ω3

……

α

α

α

≈H

≈H

≈H

≈H

ν0

ν1

ν2

ν3

……

β

β

β

Two states agree on 
values of all variables 

in set  H
ωi ≈H νi

P1 ≈H P2
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P ≈H PAttackedProving:

Proving H-equivalence: Self-Composition

Challenges:
1. Non-determinism, 

e.g., accel ∪ brake

2. Duration of continuous 
evolution, e.g., 

 d′ = − v, v′ = a & (v ≥ 0 ∧ t ≤ ϵ)



Main Results & Future Work

Thank you!    

Future Work:  
    We are working on a more expressive relational logic

1. A formal threat model 
2. Two robustness properties 
3. An equivalence relation for reasoning robustness 
4. Two proof techniques  
5. Three case studies


