Relational Analysis of Sensor Attacks on
Cyber-Physical Systems

Jian Xiang, Nathan Fulton, Stephen Chong”

~Harvard University "MIT-IBM Watson AT Lab.
jxiang, chong@seas.harvard.edu nathan@ibm.com

Sensor Attacks

Obstacle

A

Sensor Attacks

Velocity
<(_>>> — Obstacle

(« S-Sy) ‘

|< ------------------ Distance ------------------- >|

Sensor Attacks

Velocity
<(_>>> — Obstacle
Qo) A
|< ------------------ Distance ------------------- >|

accelerate or brake?

Sensor Attacks

Velocity
<(->>> — Obstacle
(S~y) A
NSRCEEEECETEELITEED Distance ------------------- >|

accelerate or brake? Decision is calculated based on sensed velocity and distance

Sensor Attacks

Brake
Obstacle

Safe operation

accelerate or brake? Decision is calculated based on sensed velocity and distance

Sensor Attacks

Brake
Obstacle

Safe operation

A Sensor compromised

accelerate or brake? Decision is calculated based on sensed velocity and distance

Sensor Attacks

Brake
Obstacle

Safe operation

Accelerate

O B Sensor compromised

accelerate or brake? Decision is calculated based on sensed velocity and distance

Our View

Formal approach is needed

Understanding the impact of a
compromised sensor is important

Need to reason about relational properties

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Contributions
A formal framework to model and analyze

sensor attacks on cyber-physical systems

Three case studies .

Validation

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{0

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{0

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{0

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{0

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
[£%,

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{2

a; O
aU B
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

r =0

T = %

T = 0&a
€2

a;
oalU(
o

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Program variable
Constant
Computation on terms

Hybrid Program o, 5

xr .= 0

T = %

T = 0&a
{0

a; O
aU B
0

Deterministic assignment
Nondeterministic assignment
Continuous evolution

Test 1f formula ¢ 1s true
Sequential composition
Nondeterministic choice
Nondeterministic repetition

Real-valued terms 6

L
C

01 D 02

Hybrid Program o, (3

r .= 0 Deterministic assignment
. T 1= Nondeterministic assignment

Program variable , , ,
Constant r = 0&¢ Continuous evolution
Computation on terms | Test 1f formula ¢ 1s true

o [Sequential composition

alU S Nondeterministic choice

o Nondeterministic repetition

General form: (ctrl; plcm’r) +

Differential Dynamic Logic ¢, v

01 ~ 05 Comparison between terms
¢ Negation
O N Y Conjunction
OV Y Disjunction
O — Y Implication
V. ¢ Universal quantifier
r. ¢ Existential quantifier
| Program necessity

(o) Program existance

Differential Dynamic Logic ¢, v

01 ~ 02

¢

¢ N\ Y
¢V Y
¢ — Y
V. ¢

r. @

Comparison between terms
Negation

Conjunction

Disjunction

Implication

Universal quantifier
Existential quantifier
Program necessity
Program existance

Differential Dynamic Logic ¢, v

01 ~ 05 Comparison between terms
¢ Negation
O N Y Conjunction
OV Y Disjunction
O — Y Implication
V. ¢ Universal quantifier
r. ¢ Existential quantifier
| Program necessity

(o) Program existance

Differential Dynamic Logic ¢, v

01 ~ 05 Comparison between terms
¢ Negation
O N Y Conjunction
OV Y Disjunction
O — Y Implication
V. ¢ Universal quantifier
r. ¢ Existential quantifier
| Program necessity
(o) Program existance

Safety: ¢ — |a |y

Example Hybrid Program Model
i A

Example Hybrid Program Model
i A

d : distance to obstacle F ---------- d -oreeeeees ’!

Example Hybrid Program Model
=

d . distance to obstacle }< ----------
v vehicle velocity

Example Hybrid Program Model

d . distance to obstacle }< ----------

v vehicle velocity
a :acceleration

v vehicle velocity

Example Hybrid Program Model

. distance to obstacle }< ----------

acceleration ctrl = ((accel u brake); 1 :=0)

. clock variable

v . vehicle velocity

Example Hybrid Program Model
e

. distance to obstacle }< ----------

ctrl = ((accelu brake); r:=0)
brake = a:= - B

. acceleration

. clock variable
. braking rate

vy

. vehicle velocity

Example Hybri

—
|y > o

d Program Model

. distance to obstacle

. - ctrl
. acceleration

brake
. clock variable accel

. braking rate
. acceleration rate

= ((accel u brake); r:=0)
a.=—2>b
yya i =A

a > 0y =

Example Hybrid Program Model

. distance to obstacle

. vehicle velocity
. acceleration

. clock variable

. braking rate
. acceleration rate
. control interval

ctrl = ((accelu brake); r:=0)
brake = a:=—-B
accel = y,a:=A

W =2Bd > v’ + (A + B)(A€e? + 2ve)

a > 0y =

Example Hybrid Program Model

. distance to obstacle

. vehicle velocity
. acceleration

. clock variable

. braking rate
. acceleration rate
. control interval

ctrl = ((accel u brake); 1 :=0)
brake = a:=—-B
accel = y,a:=A
W =2Bd > v’ + (A + B)(Ae? + 2ve)
plant =d'=—-v,v'=a,'=1& v>0At<¢)

a > 0y =

Example Hybrid Program Model

—>
S >
. distance to obstacle }< ----------
: vehicle velocit
| oY ctrl = ((accel u brake); 1 :=0)
. acceleration
brake = a:= - B
. clock variable accel =a:=A

. braking rate W =2Bd > v:+ (A + B)(Ae? + 2ve)
. acceleration rate

. control interval plant =d'=—-v,v'=a,'=1& v>0At<¢)

(A>0AB>0A2Bd > v?)

a > 0y =

Example Hybrid Program Model

—>
S >
. distance to obstacle }< ----------
: vehicle velocit
| oY ctrl = ((accel u brake); 1 :=0)
. acceleration
brake = a:= - B
. clock variable accel =a:=A

. braking rate W =2Bd > v:+ (A + B)(Ae? + 2ve)
. acceleration rate

. control interval plant =d'=—-v,v'=a,'=1& v>0At<¢)

(A>0AB>0A2Bd>v*) — [(ctrl; plant)*]

a > 0y =

Example Hybrid Program Model

—>
S >
. distance to obstacle }< ----------
: vehicle velocit
| oY ctrl = ((accel u brake); 1 :=0)
. acceleration
brake = a:= - B
. clock variable accel =a:=A

. braking rate W =2Bd > v:+ (A + B)(Ae? + 2ve)
. acceleration rate

. control interval plant =d'=—-v,v'=a,'=1& v>0At<¢)

(A>0AB>0A2Bd>v*) — [(ctrl;plant)*] (d > 0)

Example with Sensing
i A

Example with Sensing

d, : distance (physical)

Example with Sensing

d, : distance (physical)
d, : distance (sensed)

AR

§<

Example with Sensing

. distance (physical)
. distance (sensed)

. velocity (physical)
. velocity (sensed)

s

P

AR

§<

S

. velocity (physical)
. velocity (sensed)

Example with Sensing

. distance (physical)
. distance (sensed)

plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

AR

E<

S

Example with Sensing

. distance (physical)
. distance (sensed)

. velocity (physical)
. velocity (sensed)

ctrl = ((accel u brake); ¢ :=0)
brake = a:=-B
accel = y;a:=A
plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

AR

E<

S

Example with Sensing

. distance (physical)
. distance (sensed)

. velocity (physical)
. velocity (sensed)

ctrl =
brake = a:=-B
accel = y;a:=A
plant =d,=—v,

Vp

v i= 1,5 dg := d,; ((accel U brake); ¢ := 0)

—at—l&(v >0At<L¢€)

AR

E<

S

Example with Sensing

. distance (physical)
. distance (sensed)

. velocity (physical)
. velocity (sensed)

ctrl =v,:=v, d;:=d}; ((accel U brake); t:= 0)

brake
accel

a.=—2~b
hyra = A

W =2Bd; > v2 + (A 4+ B)(Ae? + 2v <€)

plant = d), =

p?

Vp

—at—l&(v >0At<L¢€)

AR

E<

=

Example with Sensing

. distance (physical) ctrl =v,:=v, d;:=d}; ((accel U brake); t:= 0)
: distance (sensed) brake = a:= - B
. velocity (physical) accel = y;a:=A
. velocity (sensed) Y =2Bd; > v2 + (A + B)(Ae? + 2v <€)
plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

(A>0AB>0A2Bd,> vﬁ) — [(ctrl; plant)*] (d, > 0)

AR

E<

S

Example with Sensor Attack

. distance (physical) ctrl =v,:=v, d;:=d, ((accel U brake); t:=0)
: distance (sensed) brake = a:= - B
. velocity (physical) accel = y;a:=A
. velocity (sensed) Y =2Bd; > v2 + (A + B)(Ae? + 2v <€)
plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

AR

E<

Example with Sensor Attack

. distance (physical) ctrl = d, :=d,; ((accel U brake); t:=0)
: distance (sensed) brake = a:= - B
. velocity (physical) accel = y;a:=A
. velocity (sensed) Y =2Bd; > v2 + (A + B)(Ae? + 2v <€)
plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

AR

E<

S

Example with Sensor Attack

. distance (physical) ctrl = v, == d;:=d,; ((accel U brake); ¢ := 0)
: distance (sensed) brake = a:= - B
. velocity (physical) accel = y;a:=A
. velocity (sensed) Y =2Bd; > v2 + (A + B)(Ae? + 2v <€)
plant =d,)=-v,v,=a,t'=1& (v, 20At<L¢€)

Two Robustness Properties

(L) (L)
¢ i ¢ e

P r Attacked

Two Robustness Properties

(L) (L)
¢ i ¢ e

P
Robustness of Safety

r Attacked

P is robustly safe: if P is safe, then P, .., is safe

Two Robustness Properties

(L) (L)
¢ i ¢ e

P
Robustness of Safety # Safety

P is robustly safe: if P is safe, then P, .., is safe

r Attacked

Two Robustness Properties

(L) (L)
¢ i ¢ e

P
Robustness of Safety # Safety

P is robustly safe: if P is safe, then P, .., is safe

r Attacked

(¢pm — [P]¢Safe)

Two Robustness Properties

(L) (L)
¢ i ¢ e

P
Robustness of Safety # Safety

P is robustly safe: if P is safe, then P, .., is safe

r Attacked

(¢pre - [P]¢safe) — (¢pre = [P Attacked]¢safe)

Two Robustness Properties

(L) (L)
¢ i ¢ e

P
Robustness of Safety 75 Safety

P is robustly safe: if P is safe, then P, .., is safe

r Attacked

(¢pre - [P]¢safe) — (¢pre = [P Attacked]¢safe)

Robustness of high-integrity state

H-Equivalence of Two Programs

H-Equivalence of Two Programs

H-Equivalence of Two Programs

Pi=a*and P, =p* P, =y P,

H-Equivalence of Two Programs

Pi=a*and P, =p* P, =y P,

H-Equivalence of Two Programs

ON 2
al) p
N U
))

H-Equivalence of Two Programs

al)ﬁ
) ~ L
I H I Two states agree on
061)ﬁ W; ~g U; values of all variables
~J In set H
H ~H %)

Proving H-equivalence: Self-Composition

Proving: P~y Paucked

Challenges:

Proving H-equivalence: Self-Composition

Proving: P~y Paucked

Challenges:

1. Non-determinism,
e.g., accel U brake

Proving H-equivalence: Self-Composition

Proving: P~y Paucked

Challenges:

1. Non-determinism,
e.g., accel U brake

2. Duration of continuous
evolution, e.q.,
d=—v,v=a& v>20A1t<¢€)

Main Results & Future Work

A formal threat model

Two robustness properties

An equivalence relation for reasoning robustness
Two proof techniques

Three case studies

o w N e

Future Work:
We are working on a more expressive relational logic

Thank you!

