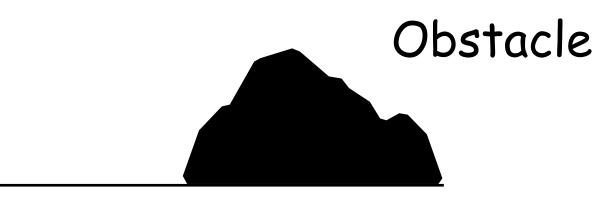
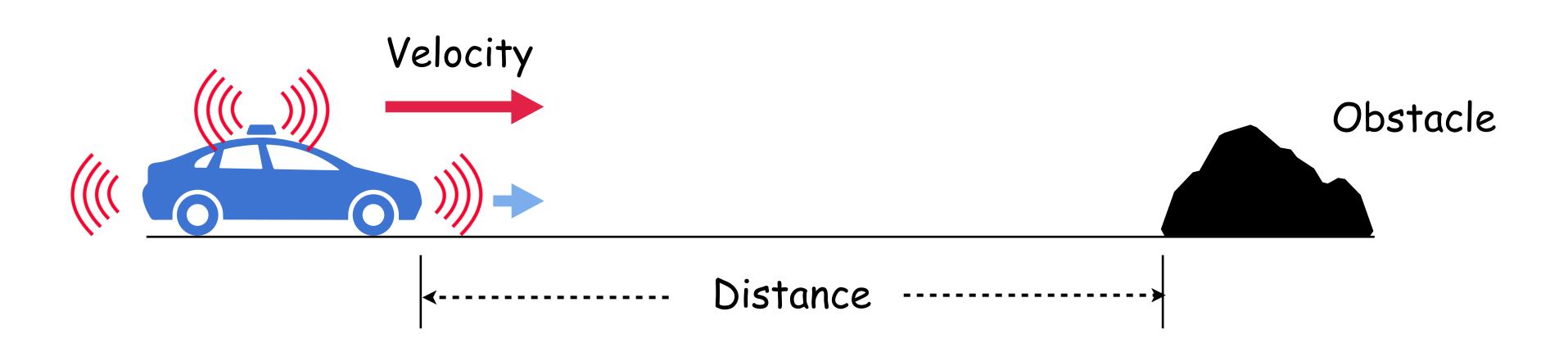
Relational Analysis of Sensor Attacks on Cyber-Physical Systems

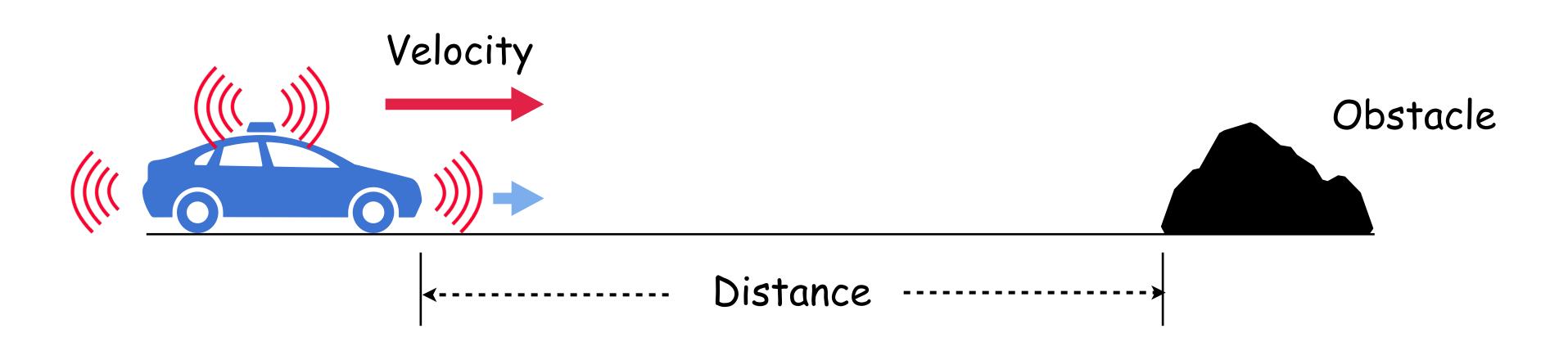
*Harvard University jxiang, chong@seas.harvard.edu

Jian Xiang, Nathan Fulton, Stephen Chong*

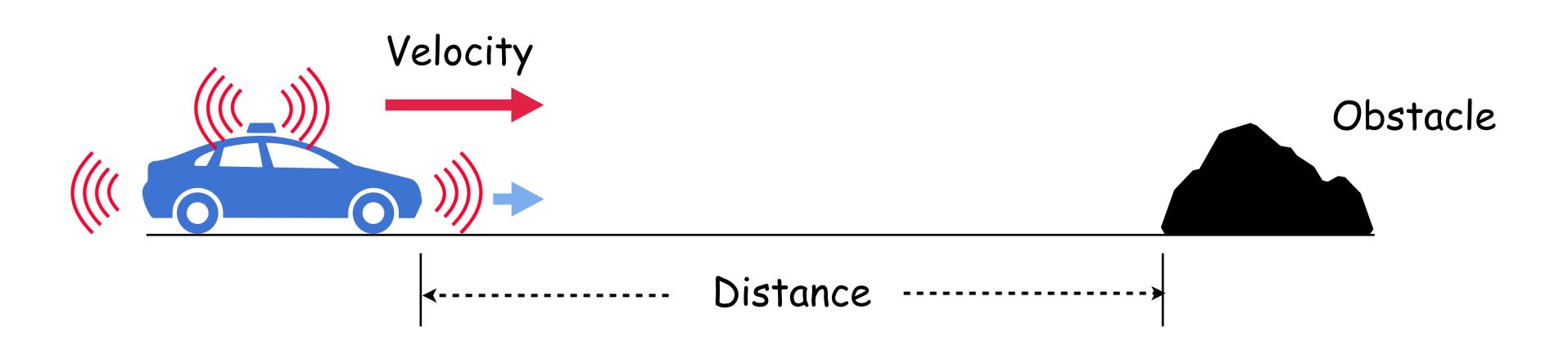
[†]MIT-IBM Watson AI Lab. nathan@ibm.com





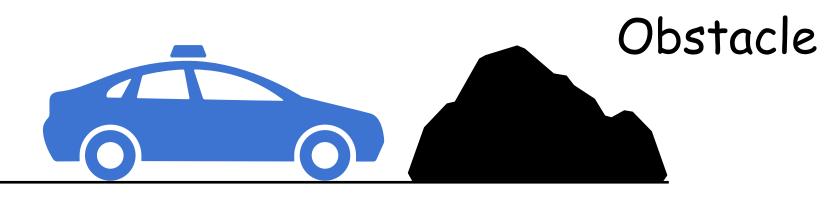


accelerate or brake?



accelerate or brake? Decision is calculated based on sensed velocity and distance

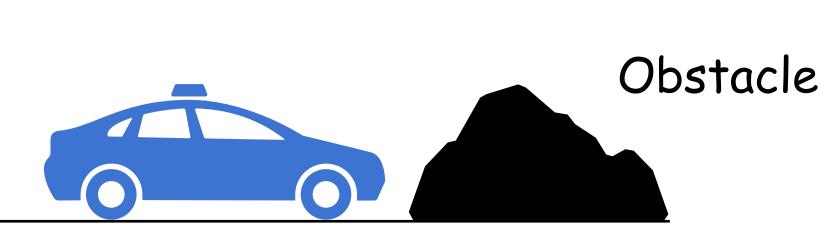
Brake



accelerate or brake? Decision is calculated based on sensed velocity and distance

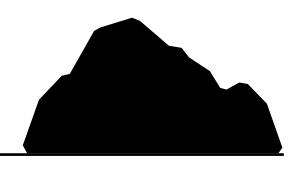
Safe operation

Brake





accelerate or brake? Decision is calculated based on sensed velocity and distance



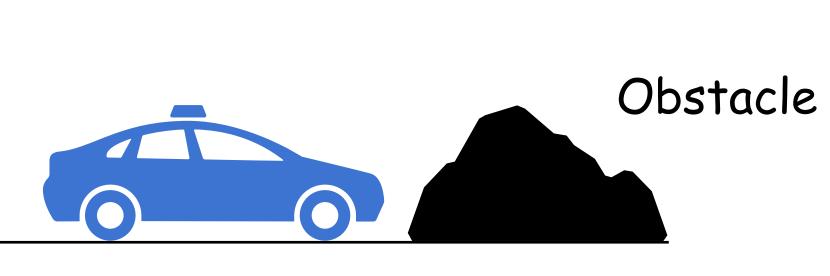
Sensor compromised

Safe operation

Sensor Attacks

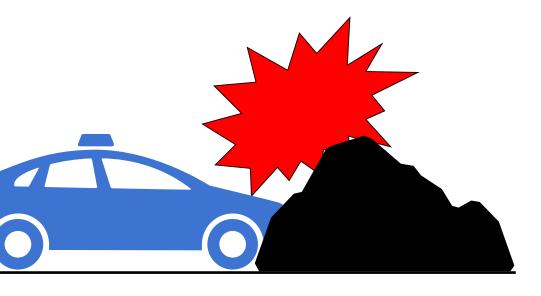
Sensor Attacks

Brake



Accelerate

accelerate or brake? Decision is calculated based on sensed velocity and distance



Sensor compromised

Safe operation

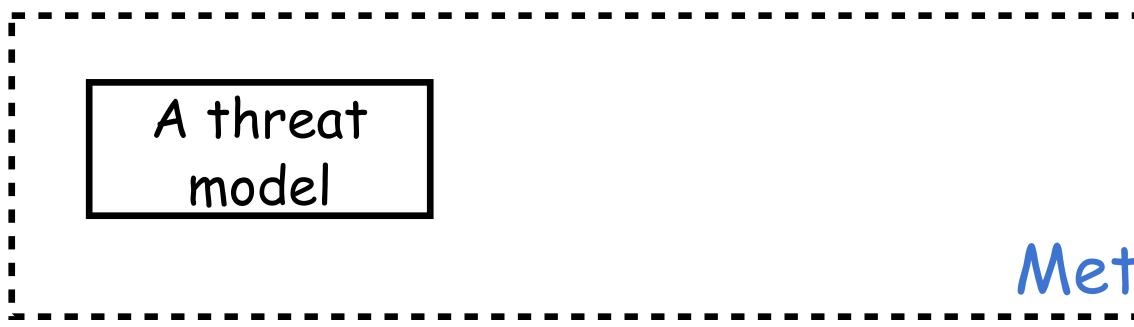
- 1. Formal approach is needed
- 2. Understanding the impact of a
 - compromised sensor is important
- 3. Need to reason about relational properties

Our View

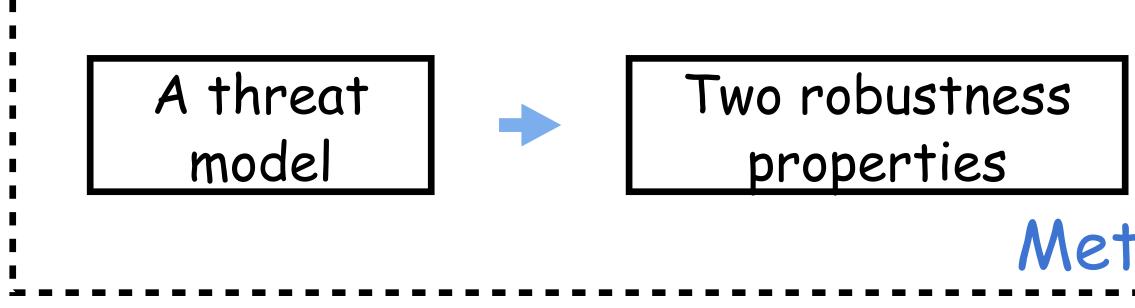
Methodology

Contributions

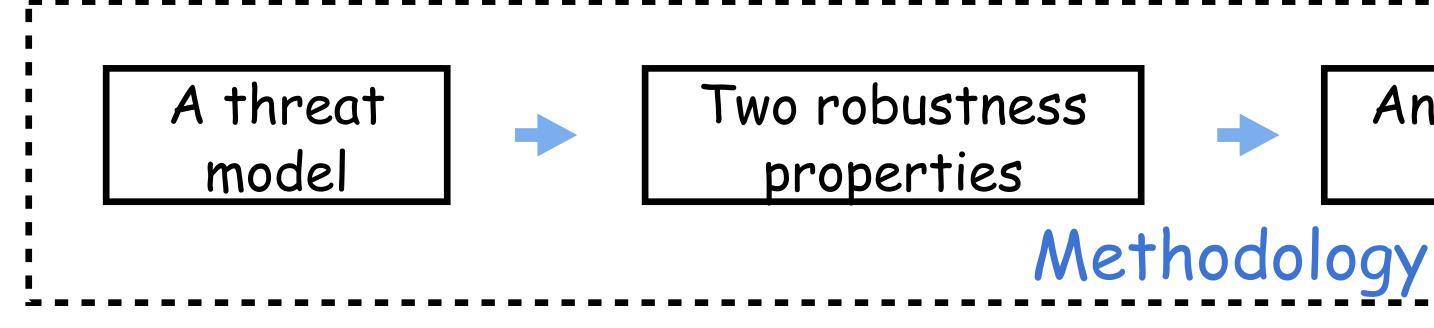
A formal framework to model and analyze sensor attacks on cyber-physical systems



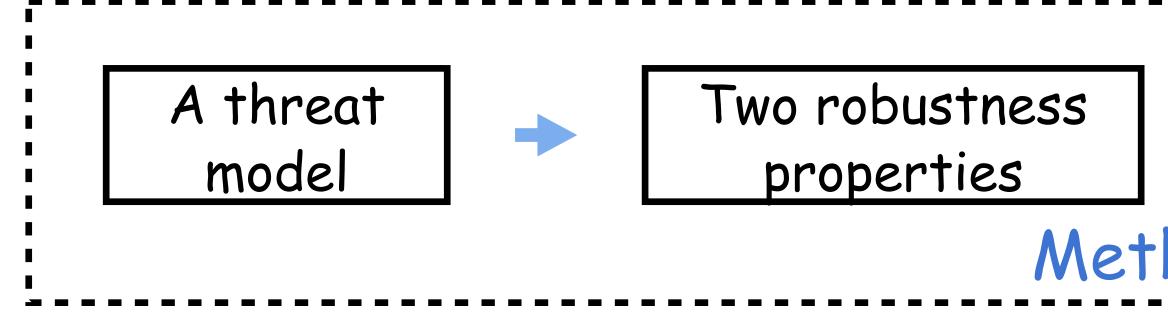
Methodology



Methodology

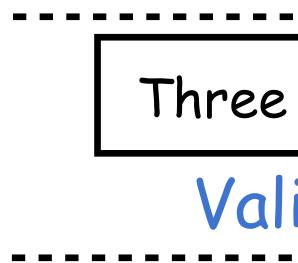


An equivalence relation



An equivalence relation Two proof techniques Methodology

Contributions A formal framework to model and analyze sensor attacks on cyber-physical systems An equivalence A threat Two robustness Two proof relation properties techniques model Methodology Three case studies Validation



Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $?\phi$ Computation on terms $\theta_1 \oplus \theta_2$ $\alpha;\beta$

 $lpha^*$

Hybrid Program α , β $x := \theta$ Deterministic assignment Nondeterministic assignment x := * $x' = \theta \& \phi$ Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice $\alpha \cup \beta$ Nondeterministic repetition

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ Computation on terms $heta_1 \oplus heta_2$

Hybrid Program α , β $x := \theta$ x := *

 $x' = \theta \& \phi$

 $?\phi$

 $lpha^*$

 $\alpha;\beta$

 $\alpha \cup \beta$

Deterministic assignment Nondeterministic assignment Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice Nondeterministic repetition

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $?\phi$ Computation on terms $heta_1 \oplus heta_2$ $\alpha;\beta$

Hybrid Program α , β $x := \theta$ Deterministic assignment Nondeterministic assignment x := * $x' = \theta \& \phi$ Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice $\alpha \cup \beta$ Nondeterministic repetition

 $lpha^*$

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $heta_1 \oplus heta_2$ Computation on terms

Hybrid Program α , β

 $x := \theta$ x := * $x' = \theta \& \phi$

 $?\phi$

 $lpha^*$

 $\alpha;\beta$

 $\alpha \cup \beta$

Deterministic assignment Nondeterministic assignment Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice Nondeterministic repetition

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $heta_1 \oplus heta_2$ Computation on terms

Hybrid Program α , β $x := \theta$ Deterministic assignment Nondeterministic assignment x := * $x' = \theta \& \phi$ Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice $\alpha \cup \beta$ Nondeterministic repetition

 $?\phi$

 $\alpha;\beta$

 $lpha^*$

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $\theta_1 \oplus \theta_2$ Computation on terms

Hybrid Program α , β $x := \theta$ x := * $x' = \theta \& \phi$ $\alpha;\beta$ $\alpha \cup \beta$

 $?\phi$

 $lpha^*$

Deterministic assignment Nondeterministic assignment Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice Nondeterministic repetition

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ Computation on terms $heta_1 \oplus heta_2$

Hybrid Program α , β $x := \theta$ x := *

- $x' = \theta \& \phi$
- $?\phi$ $\alpha;\beta$ α

 $lpha^*$

Deterministic assignment Nondeterministic assignment Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice Nondeterministic repetition

Real-valued terms θ Program variable \mathcal{X} Constant $\boldsymbol{\mathcal{C}}$ $?\phi$ Computation on terms $\theta_1 \oplus \theta_2$ $\alpha;\beta$

 $lpha^*$

Hybrid Program α , β $x := \theta$ Deterministic assignment Nondeterministic assignment x := * $x' = \theta \& \phi$ Continuous evolution Test if formula ϕ is true Sequential composition Nondeterministic choice $\alpha \cup \beta$ Nondeterministic repetition

Hybrid Program α , β $x := \theta$ Deterministic assignment **Real-valued terms** θ Nondeterministic assignment x := *Program variable \mathcal{X} $x' = \theta \& \phi$ Continuous evolution Constant $\boldsymbol{\mathcal{C}}$ $?\phi$ Test if formula ϕ is true $heta_1 \oplus heta_2$ Computation on terms Sequential composition $\alpha;\beta$ $\alpha \cup \beta$ Nondeterministic choice $lpha^*$ Nondeterministic repetition

General form: (ctrl; plant) *

 $\theta_1 \sim \theta_2$ $\neg \phi$ $\phi \wedge \psi$ $\phi \lor \psi$ $\phi \to \psi$ $\forall x. \phi$ $\exists x. \phi$ $[\alpha]\phi$ $\langle \alpha \rangle \phi$

Differential Dynamic Logic ϕ, ψ Comparison between terms Negation Conjunction Disjunction Implication Universal quantifier Existential quantifier Program necessity Program existance

 $\theta_1 \sim \theta_2$ $\neg \phi$ $\phi \wedge \psi$ $\phi \lor \psi$ $\phi \rightarrow \psi$ $\forall x. \phi$ $\exists x. \phi$ $|\alpha|\phi$ $\langle \alpha \rangle \phi$

Differential Dynamic Logic ϕ, ψ Comparison between terms Negation Conjunction Disjunction Implication Universal quantifier Existential quantifier Program necessity Program existance

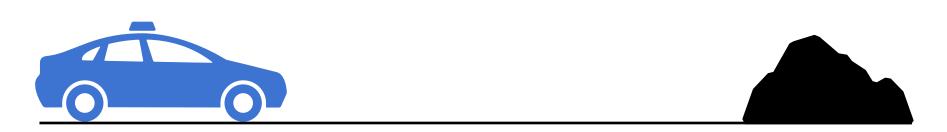
 $\theta_1 \sim \theta_2$ $\neg \phi$ $\phi \wedge \psi$ $\phi \lor \psi$ $\phi \rightarrow \psi$ $\forall x. \phi$ $\exists x. \phi$ $|\alpha|\phi$

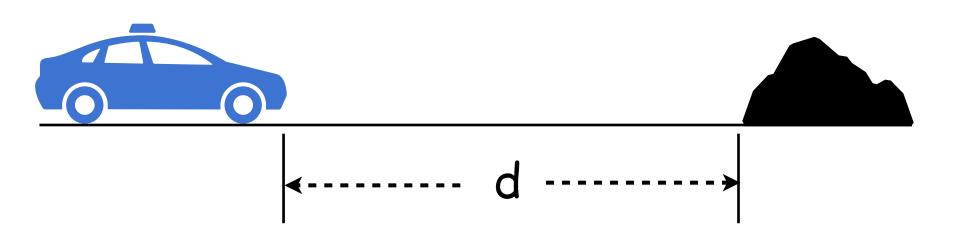
 α

Differential Dynamic Logic ϕ, ψ Comparison between terms Negation Conjunction Disjunction Implication Universal quantifier Existential quantifier Program necessity Program existance

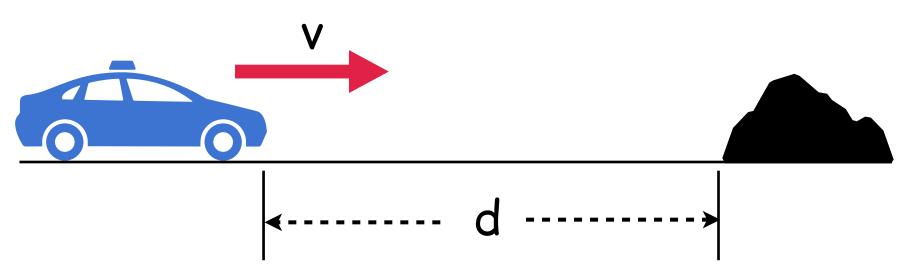
 $heta_1 \sim heta_2$ $\neg \phi$ $\phi \wedge \psi$ $\phi \lor \psi$ $\phi \rightarrow \psi$ $\forall x. \phi$ $\exists x. \phi$ $\alpha \phi$ $\langle \alpha \rangle \phi$

Differential Dynamic Logic ϕ, ψ Comparison between terms Negation Conjunction Disjunction Implication Universal quantifier Existential quantifier Program necessity Program existance Safety: $\phi \rightarrow [\alpha]\psi$

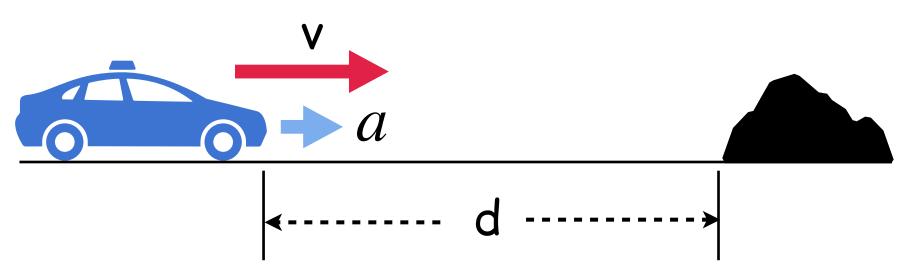




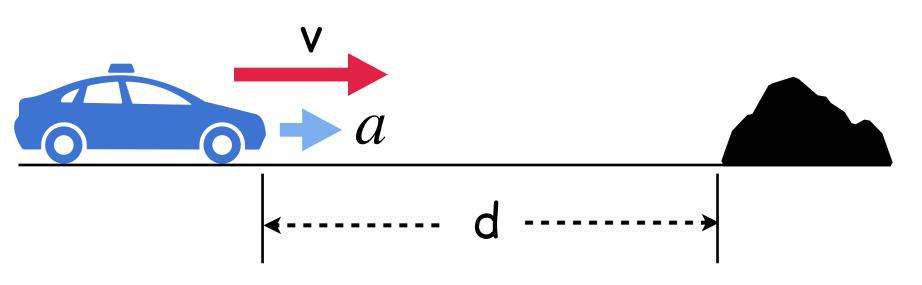
d : distance to obstacle



- d : distance to obstacle
- v : vehicle velocity

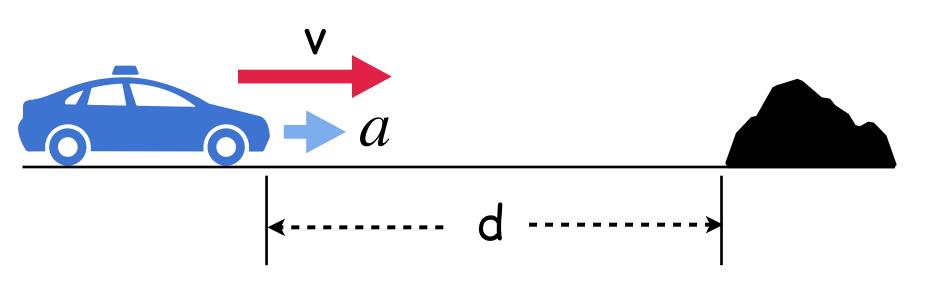


- d : distance to obstacle
- v : vehicle velocity
- a : acceleration



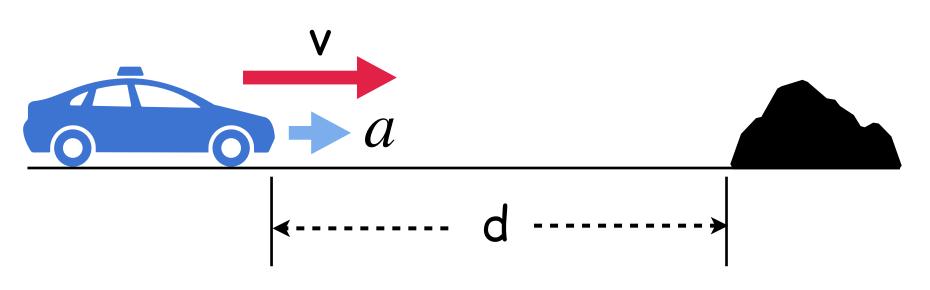
- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable

 $ctrl \equiv ((accel \cup brake); t := 0)$



- d : distance to obstacle
- : vehicle velocity \mathcal{V}
- a : acceleration
- : clock variable t
- B : braking rate

- $ctrl \equiv ((accel \cup brake); t := 0)$
- brake $\equiv a := -B$



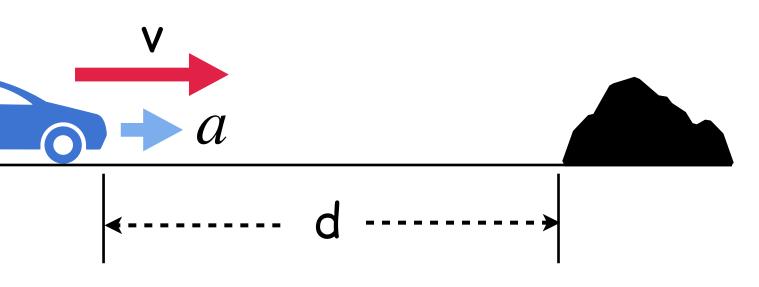
- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate

ctrl orake acce

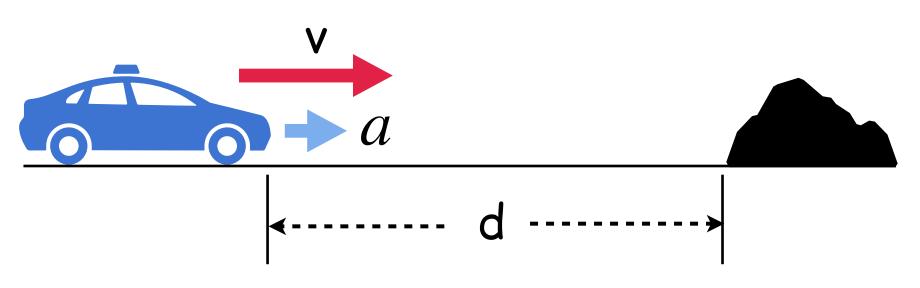
- $ctrl \equiv ((accel \cup brake); t := 0)$
- brake $\equiv a := -B$
- accel $\equiv ?\psi; a := A$

- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate
- ϵ : control interval

Example Hybrid Program Model



- $ctrl \equiv ((accel \cup brake); t := 0)$
- brake $\equiv a := -B$
- accel $\equiv ?\psi; a := A$
 - $\Psi \equiv 2Bd > v^2 + (A + B)(A\epsilon^2 + 2v\epsilon)$

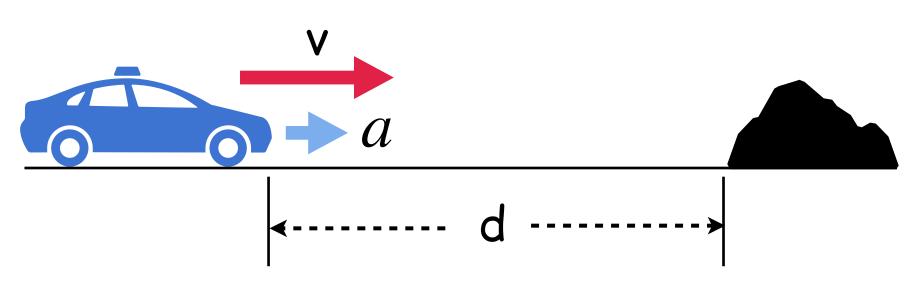


- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate
- ϵ : control interval

Example Hybrid Program Model

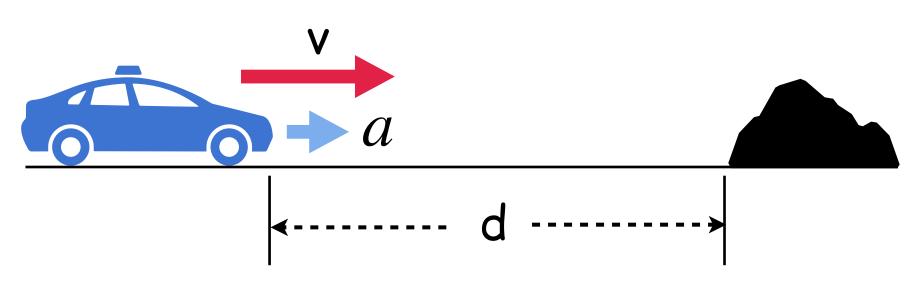
- $ctrl \equiv ((accel \cup brake); t := 0)$
- brake $\equiv a := -B$
- accel $\equiv ?\psi; a := A$
 - $\Psi \equiv 2Bd > v^2 + (A + B)(A\epsilon^2 + 2v\epsilon)$
- plant $\equiv d' = -v, v' = a, t' = 1 \& (v \ge 0 \land t \le \epsilon)$

Example Hybrid Program Model



- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate
- ϵ : control interval
 - $(A \ge 0 \land B \ge 0 \land 2Bd > v^2)$

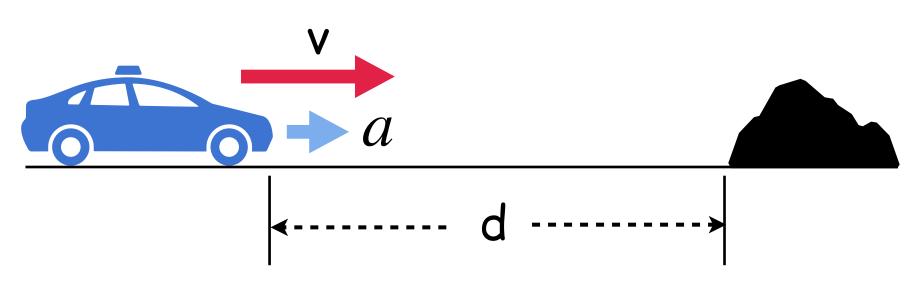
- $ctrl \equiv ((accel \cup brake); t := 0)$
- brake $\equiv a := -B$
- accel $\equiv ?\psi; a := A$
 - $\Psi \equiv 2Bd > v^2 + (A + B)(A\epsilon^2 + 2v\epsilon)$
- plant $\equiv d' = -v, v' = a, t' = 1 \& (v \ge 0 \land t \le \epsilon)$



- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate
- ϵ : control interval
 - $(A \ge 0 \land B \ge 0 \land 2Bd > v^2) \rightarrow [(\mathsf{ctrl}; \mathsf{plant})^*]$

Example Hybrid Program Model

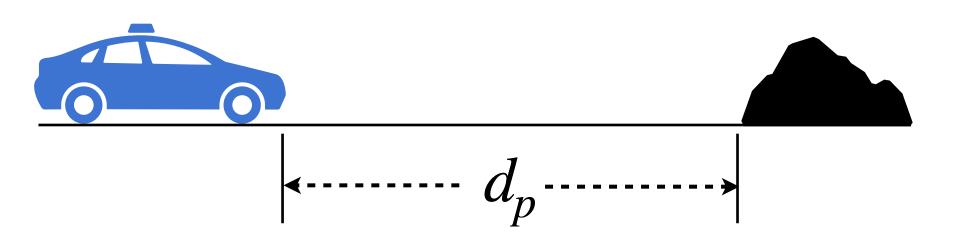
 $ctrl \equiv ((accel \cup brake); t := 0)$ brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ $\Psi \equiv 2Bd > v^2 + (A + B)(A\epsilon^2 + 2v\epsilon)$ plant $\equiv d' = -v, v' = a, t' = 1 \& (v \ge 0 \land t \le \epsilon)$



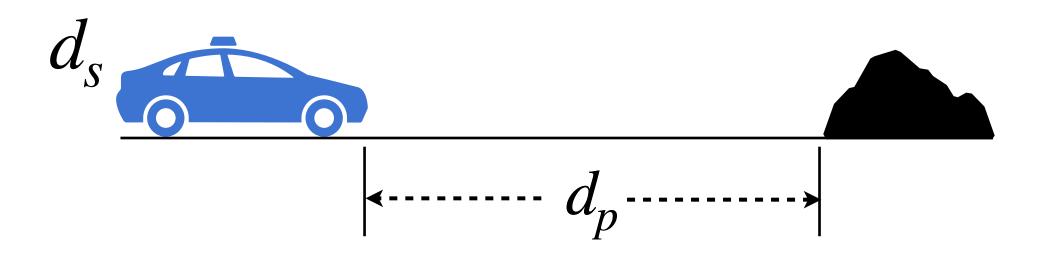
- d : distance to obstacle
- v : vehicle velocity
- a : acceleration
- t : clock variable
- B : braking rate
- A : acceleration rate
- ϵ : control interval
 - $(A \ge 0 \land B \ge 0 \land 2Bd > v^2) \rightarrow [(\mathsf{ctrl}; \mathsf{plant})^*] \ (d > 0)$

Example Hybrid Program Model

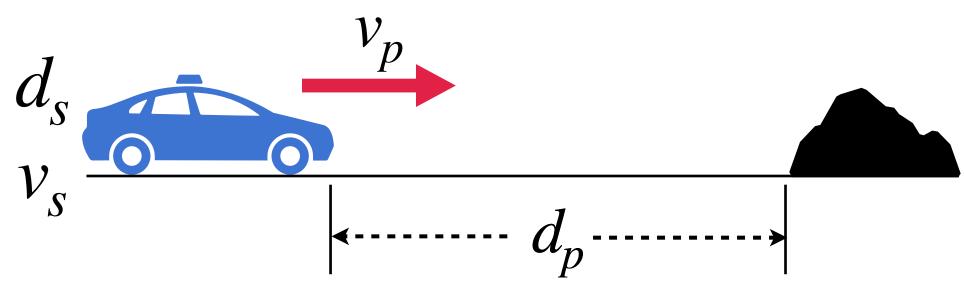
 $ctrl \equiv ((accel \cup brake); t := 0)$ brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ $\Psi \equiv 2Bd > v^2 + (A + B)(A\epsilon^2 + 2v\epsilon)$ **plant** $\equiv d' = -v, v' = a, t' = 1 \& (v \ge 0 \land t \le \epsilon)$



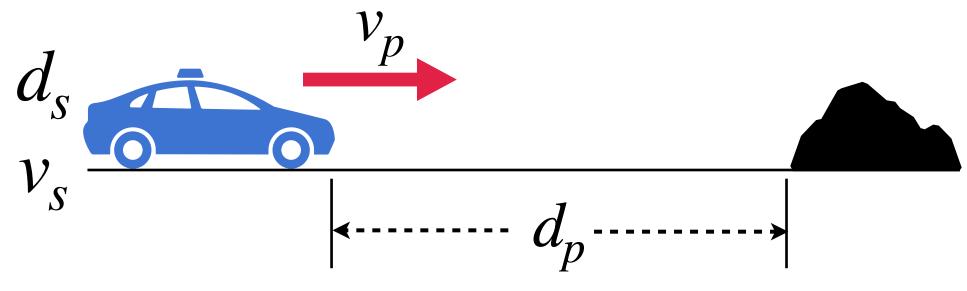
d_p : distance (physical)



- d_p : distance (physical)
- d_s : distance (sensed)

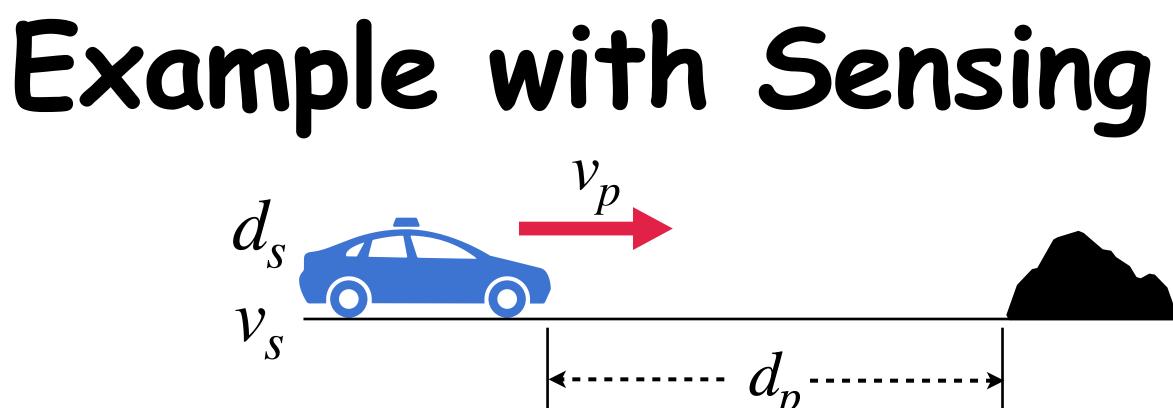


- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

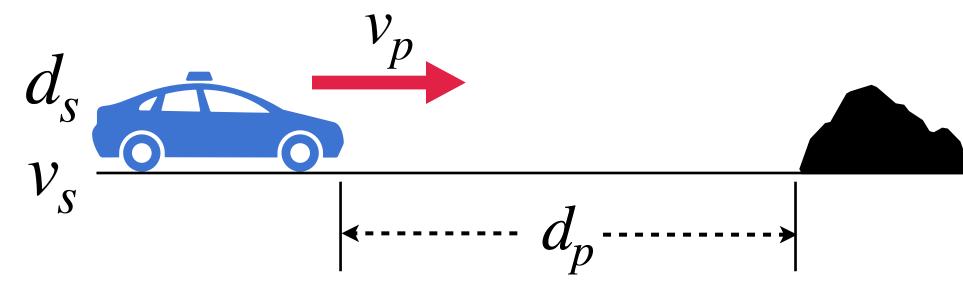
plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

 $ctrl \equiv ((accel \cup brake); t := 0)$ brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$

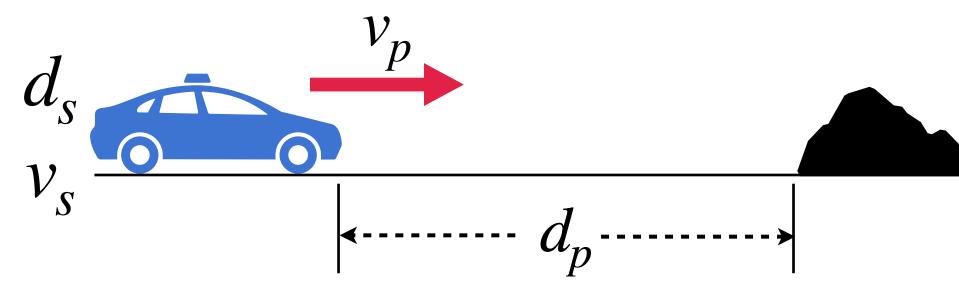
plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

 $ctrl \equiv v_s := v_p; d_s := d_p; ((accel \cup brake); t := 0)$ brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$

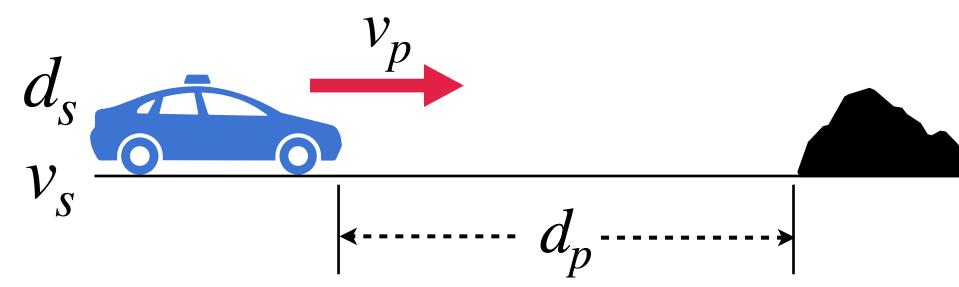
plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

- $ctrl \equiv v_s := v_p; d_s := d_p; ((accel \cup brake); t := 0)$ $\Psi \equiv 2Bd_s > v_s^2 + (A + B)(A\epsilon^2 + 2v_s\epsilon)$
- brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$

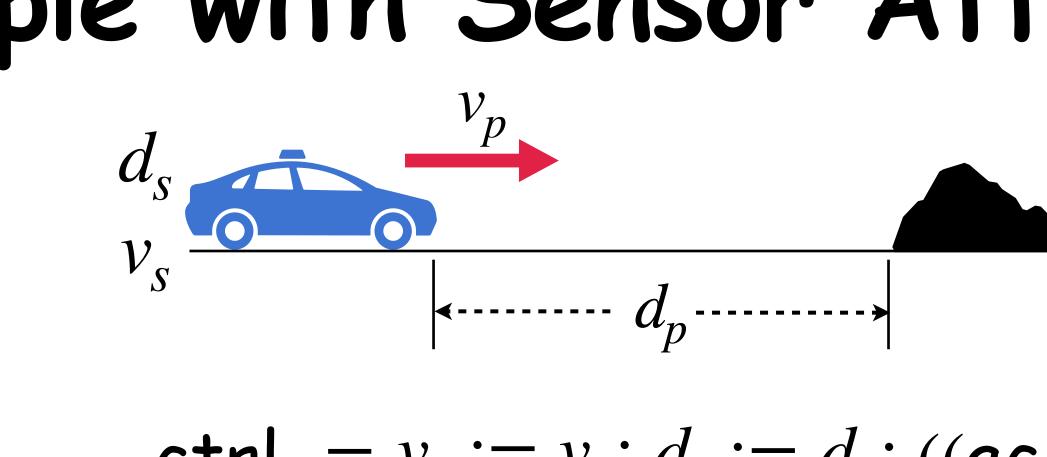
Example with Sensing



- $\mathsf{ctrl} \equiv v_s := v_p; d_s := d_p; ((\mathsf{accel} \cup \mathsf{brake}); t := 0)$ d_p : distance (physical) d_s : distance (sensed) brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ v_p : velocity (physical) v_s : velocity (sensed) $\Psi \equiv 2Bd_s > v_s^2 + (A + B)(A\epsilon^2 + 2v_s\epsilon)$ plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$ $(A \ge 0 \land B \ge 0 \land 2Bd_p > v_p^2) \quad \rightarrow [(\mathsf{ctrl}; \mathsf{plant})^*] \ (d_p > 0)$

Example with Sensing

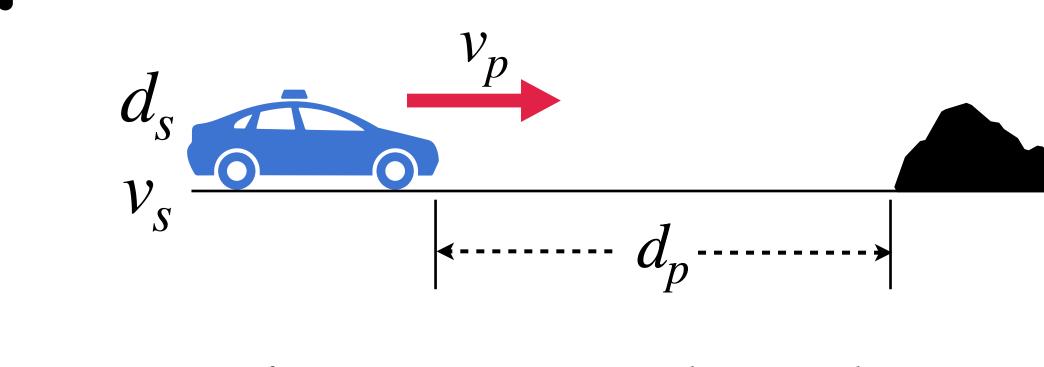
Example with Sensor Attack



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

- $ctrl \equiv v_s := v_p; d_s := d_p; ((accel \cup brake); t := 0)$ $\Psi \equiv 2Bd_s > v_s^2 + (A + B)(A\epsilon^2 + 2v_s\epsilon)$
- brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$

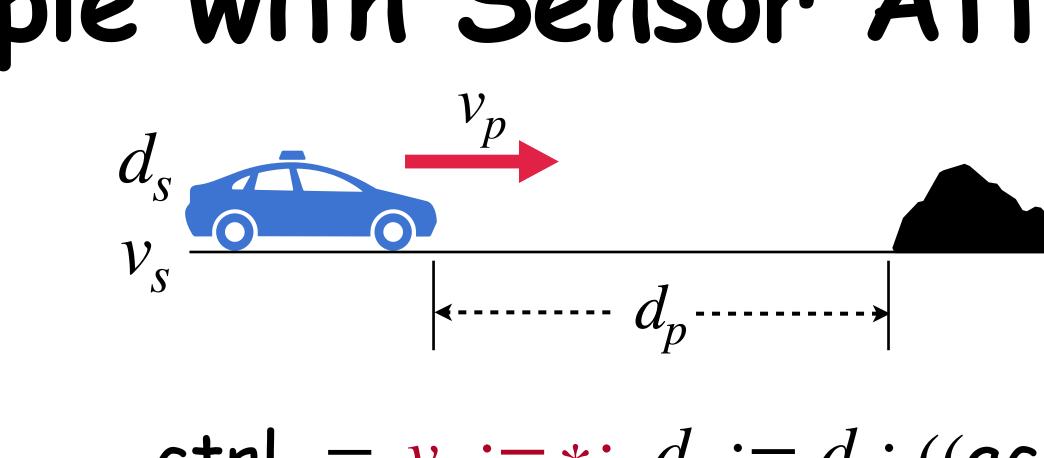
Example with Sensor Attack



- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

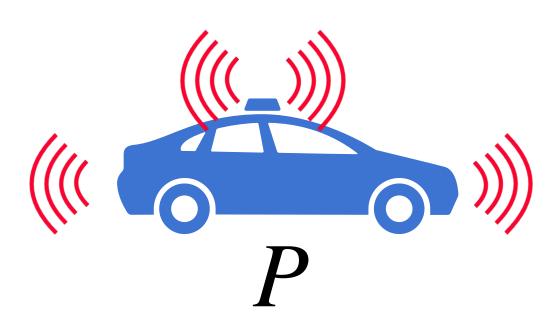
- $ctrl \equiv d_s := d_p; ((accel \cup brake); t := 0)$ $\Psi \equiv 2Bd_s > v_s^2 + (A + B)(A\epsilon^2 + 2v_s\epsilon)$
- brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$

Example with Sensor Attack

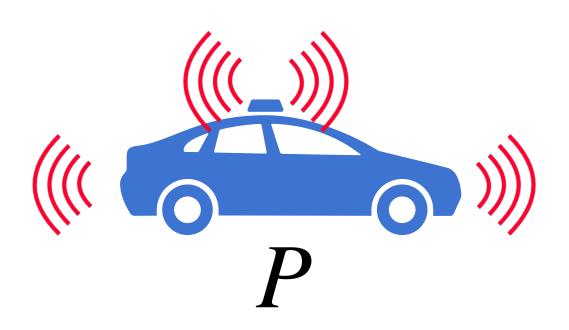


- d_p : distance (physical)
- d_s : distance (sensed)
- v_p : velocity (physical)
- v_s : velocity (sensed)

- ctrl $\equiv v_s := *; d_s := d_p; ((accel \cup brake); t := 0)$ $\Psi \equiv 2Bd_s > v_s^2 + (A + B)(A\epsilon^2 + 2v_s\epsilon)$
- brake $\equiv a := -B$ accel $\equiv ?\psi; a := A$ plant $\equiv d'_p = -v_p, v'_p = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$

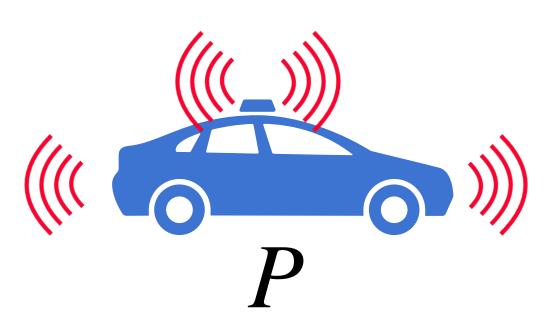


P_{Attacked}

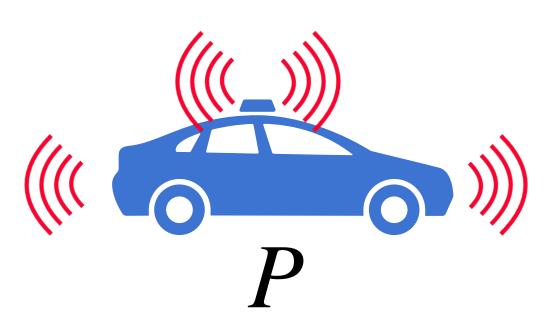


Robustness of Safety

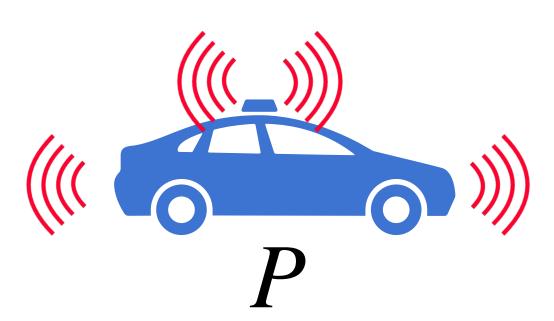
P is robustly safe: if P is safe, then $P_{Attacked}$ is safe



 $(\phi_{pre} \rightarrow [P]\phi_{safe})$



 $(\phi_{pre} \to [P]\phi_{safe}) \longrightarrow (\phi_{pre} \to [P_{Attacked}]\phi_{safe})$



Robustness of high-integrity state

 $(\phi_{pre} \to [P]\phi_{safe}) \longrightarrow (\phi_{pre} \to [P_{Attacked}]\phi_{safe})$

 $P_1 = \alpha * \text{ and } P_2 = \beta *$

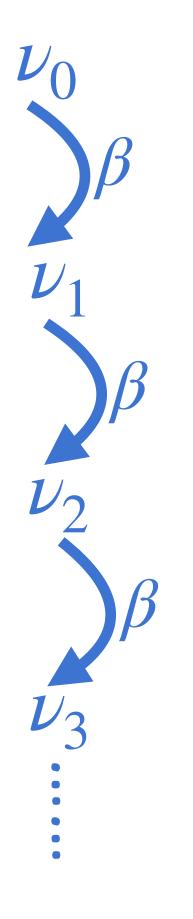
 $P_1 = \alpha^* \text{ and } P_2 = \beta^* \quad P_1 \approx_H P_2$

 $P_1 = \alpha^* \text{ and } P_2 = \beta^* \quad P_1 \approx_H P_2$

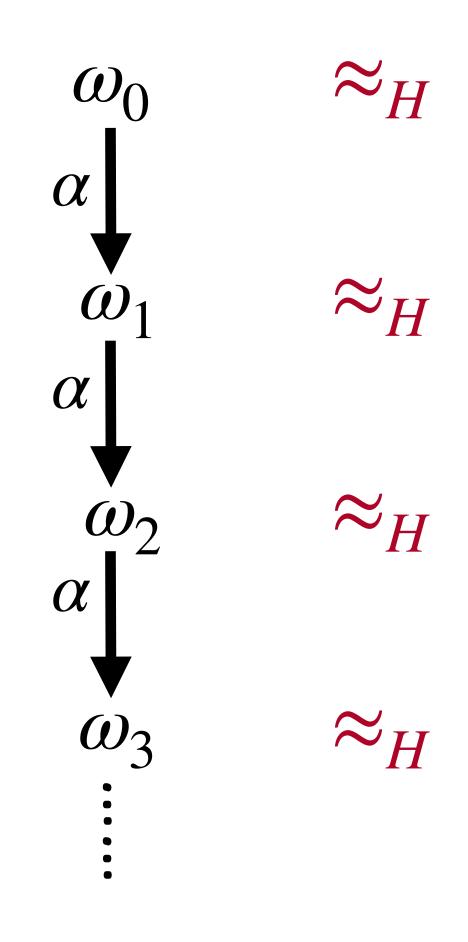
 ω_0 $\dot{\omega}_1$ $\dot{\omega}_2$ ω_3

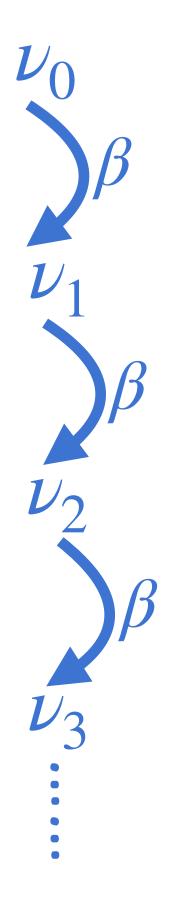
 $P_1 = \alpha^* \text{ and } P_2 = \beta^* \quad P_1 \approx_H P_2$

 ω_0 α ω α ω_2 α ω_3



 $P_1 = \alpha^* \text{ and } P_2 = \beta^* \quad P_1 \approx_H P_2$





Two states agree on $\omega_i \approx_H \nu_i$ values of all variables in set H

Proving H-equivalence: Self-Composition

Challenges:

Proving: $P \approx_H P_{Attacked}$

Proving H-equivalence: Self-Composition

- Challenges:
- Non-determinism, 1.
 - **e.g.**, $accel \cup brake$

Proving: $P \approx_H P_{Attacked}$

Proving H-equivalence: Self-Composition

- Challenges:
- 1. Non-determinism,
 - **e.g.**, $accel \cup brake$
- 2. Duration of continuous evolution, e.g.,
 - $d' = -v, v' = a \& (v \ge 0 \land t \le \epsilon)$

Proving: $P \approx_H P_{Attacked}$

Main Results & Future Work

- 1. A formal threat model
- 2. Two robustness properties
- 3. An equivalence relation for reasoning robustness 4. Two proof techniques
- 5. Three case studies

Future Work: We are working on a more expressive relational logic

