
Jian Xiang, Nathan Fulton, Stephen Chong

Relational Analysis of Sensor Attacks on
Cyber-Physical Systems

Harvard University
jxiang, chong@seas.harvard.edu

MIT-IBM Watson AI Lab.
 nathan@ibm.com

* *

†*

†

Sensor Attacks

Obstacle

Sensor Attacks

Obstacle

Distance

Velocity

Sensor Attacks

Obstacle

Distance

Velocity

accelerate or brake?

Sensor Attacks

Obstacle

Distance

Velocity

accelerate or brake? Decision is calculated based on sensed velocity and distance

Sensor Attacks

Obstacle

accelerate or brake? Decision is calculated based on sensed velocity and distance

Safe operation

Brake

Sensor Attacks

Obstacle

accelerate or brake? Decision is calculated based on sensed velocity and distance

Safe operation

Sensor compromised

Brake

Sensor Attacks

Obstacle

accelerate or brake? Decision is calculated based on sensed velocity and distance

Safe operation

Sensor compromised

Brake

Accelerate

Our View

1. Formal approach is needed
2. Understanding the impact of a

compromised sensor is important
3. Need to reason about relational properties

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

Methodology

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

A threat
model

Methodology

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

A threat
model

Two robustness
properties

Methodology

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

A threat
model

Two robustness
properties

An equivalence
relation

Methodology

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

A threat
model

Two robustness
properties

An equivalence
relation

Two proof
techniques

Methodology

Contributions
A formal framework to model and analyze
sensor attacks on cyber-physical systems

A threat
model

Two robustness
properties

An equivalence
relation

Two proof
techniques

Methodology

Three case studies

Validation

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

(ctrl; plant) *General form:

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� Program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� Program existance

Fig. 14: Syntax of hybrid programs and dL

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� Program existance

Fig. 14: Syntax of hybrid programs and dL

! → # $Safety:

Lemma 10 (Assigning arbitrary values to non-connected
variables preserves equivalence).

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8x : V, d1, d2 : R such that x 62 dom(⇣)

!1[x 7! d1] ⇠⇠⇠⇣ !2[⇠(x) 7! d2]

Lemma 9 and 10 can be proven by the definition of ⇠⇠⇠⇣ .

Lemma 11 (Choice part of composition preserve equivalence).
For program choices that consists of non-deterministic assign-
ments of choice variables,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

8� 2 ⌧.(choices) such that FST � = !1,

9�
0
2 ⌧.(choices; SUB(choices, ⇠)) such that

�
0
+ choices ⇠⇠⇠id � and

LST �
0
+ choices ⇠⇠⇠⇣ LST �

0
+ ⇠(choices)

Proof. Let � = (�0 . . .�p) be the trace of program choices,
then there exists a trace �

b for ⇠(choices) with the same
length as �, i.e., �b = (�b

0 . . .�
b

p
). We can then get a trace for

program SUB(choices, ⇠) by altering corresponding variables
in the state. Then by lemma 9 and 10 and induction on the
number of assignments in choices. ⇤

Lemma 12 (Completeness of a single iteration). Let program
P = ↵

⇤

p
and IC(P, SA, ⇠) = ↵

⇤

c
,

8!1,!2 : STA such that !1
⇠⇠⇠⇣ !2,

VAR(!1) = VAR(P), and VAR(!2) = VAR(⇠(P)),

8� 2 ⌧.(↵p) such that FST � = !1,

9�
0
2 ⌧.(↵c) such that �0

+ P ⇠⇠⇠id � and
FST �

0
+ ⇠(P) = !2

Proof. By Lemma 8 and 11. ⇤

Lemma 13 (Projections of a sequence).
8� 2 ⌧.(↵;�) such that BV(↵) \ BV(�) = ;,

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By induction on ↵, �, and definition of projection. ⇤

Lemma 14 (Soundness of the trace for composed
plant). For program ↵ = (ctrl;x0 = ✓&�) and � =
(⇠(ATTACKED(ctrl, SA)); ⇠(x0 = ✓)&⇠(�)),

8� 2 ⌧.(ctrl; ⇠(ATTACKED(ctrl, SA));

(x0 = ✓, ⇠(x0 = ✓)&(� ^ ⇠(�)))

9�
a
2 ⌧.(↵),�

b
2 ⌧.(�) such that

� + ↵ ⇠⇠⇠id �
a and � + � ⇠⇠⇠id �

b

Proof. By definition of trace semantics and Lemma 13. ⇤

Lemma 15 (Soundness of single iteration). Let program P =

↵
⇤

p
, ⇠(ATTACKED(P, SA)) = ↵

⇤

q
, and IC(P, SA, ⇠) = ↵

⇤

c
,

8� 2 ⌧.(↵c),

9�
a
2 ⌧.(↵p),�

b
2 ⌧.(↵q) such that

(� + ↵p) ⇠⇠⇠id �
a and (� + ↵q) ⇠⇠⇠id �

b

Proof. By Lemma 13 and 14. ⇤
Lemma 16 (Renaming preserve equivalence).
P ⇠⇠⇠⇣ ⇠(ATTACKED(P, SA)) $ P ⇡dom(⇣) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. ⇤
Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,
16, and induction on the number of iterations, we get P ⇡⌘

ATTACKED(P, SA). Since H ✓ ⌘, P ⇡H ATTACKED(P, SA)
(Property 2). ⇤

Real-valued terms ✓
x Program variable
c Constant
✓1 � ✓2 Computation on terms � 2 {+,⇥}

Hybrid Program ↵, �
x := ✓ Deterministic assignment
x := ⇤ Nondeterministic assignment
x0 = ✓&� Continuous evolution
?� Test if formula � is true
↵;� Sequential composition
↵ [� Nondeterministic choice
↵⇤ Nondeterministic repetition
Differential Dynamic Logic �,
✓1 ⇠ ✓2 Comparison between terms
¬� Negation
� ^ Conjunction
� _ Disjunction
�! Implication
8x. � Universal quantifier
9x. � Existential quantifier
[↵]� Program necessity
h↵i� Program existance

Fig. 14: Syntax of hybrid programs and dL

Example Hybrid Program Model

Example Hybrid Program Model

d : distance to obstacle d

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle d

v

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

d

v

a

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable

ctrl ≡ ((accel ∪ brake); t := 0)

d

v

a

brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate

ctrl ≡ ((accel ∪ brake); t := 0)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate

ctrl ≡ ((accel ∪ brake); t := 0)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

→ [(ctrl; plant)*]

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)

d

v

a

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example Hybrid Program Model

v : vehicle velocity
d : distance to obstacle

a : acceleration

t : clock variable
B : braking rate
A : acceleration rate
ϵ : control interval

→ [(ctrl; plant)*]

ctrl ≡ ((accel ∪ brake); t := 0)

(A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2)

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
plant ≡ d′ = − v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ϵ)

d

v

(d > 0)

a

Example with Sensing

Example with Sensing

dp : distance (physical)

dpdp

Example with Sensing

dp : distance (physical)

dpdp

ds : distance (sensed)

ds

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ds
vs

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensing

vp : velocity (physical)

dp : distance (physical)

→ [(ctrl; plant)*](A ≥ 0 ∧ B ≥ 0 ∧ 2Bdp > v2
p)

dpdp

vp

(dp > 0)

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)vs := vp; ds := dp;

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

vs := vp; ds := dp;

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

ds := dp;

accel ≡ ?ψ; a := A
brake ≡ a := − B

Example with Sensor Attack

vp : velocity (physical)

dp : distance (physical)

dpdp

vp

ds : distance (sensed)

vs : velocity (sensed)

ctrl ≡ ((accel ∪ brake); t := 0)

ds
vs

plant ≡ d′ p = − vp, v′ p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ϵ)

ψ ≡ 2Bds > v2
s + (A + B)(Aϵ2 + 2vsϵ)

vs := ;* ds := dp;

Two Robustness Properties

P PAttacked

Two Robustness Properties

 is robustly safe: if is safe, then is safeP P PAttacked

P PAttacked
Robustness of Safety

Two Robustness Properties

 is robustly safe: if is safe, then is safeP P PAttacked

P PAttacked
Robustness of Safety ≠ Safety

Two Robustness Properties

 is robustly safe: if is safe, then is safeP P PAttacked

P PAttacked

(ϕpre → [P]ϕsafe)

Robustness of Safety ≠ Safety

Two Robustness Properties

 is robustly safe: if is safe, then is safeP P PAttacked

P PAttacked

(ϕpre → [P]ϕsafe) (ϕpre → [PAttacked]ϕsafe)→

Robustness of Safety ≠ Safety

Two Robustness Properties

 is robustly safe: if is safe, then is safeP P PAttacked

P PAttacked

(ϕpre → [P]ϕsafe) (ϕpre → [PAttacked]ϕsafe)→

Robustness of high-integrity state

Robustness of Safety ≠ Safety

H-Equivalence of Two Programs

H-Equivalence of Two Programs
and P1 = α * P2 = β *

H-Equivalence of Two Programs
and P1 = α * P2 = β * P1 ≈H P2

H-Equivalence of Two Programs
and P1 = α * P2 = β *

ω0

ω1

ω2

ω3

……

α

α

α

P1 ≈H P2

H-Equivalence of Two Programs
and P1 = α * P2 = β *

ω0

ω1

ω2

ω3

……

α

α

α

ν0

ν1

ν2

ν3

……

β

β

β

P1 ≈H P2

H-Equivalence of Two Programs
and P1 = α * P2 = β *

ω0

ω1

ω2

ω3

……

α

α

α

≈H

≈H

≈H

≈H

ν0

ν1

ν2

ν3

……

β

β

β

Two states agree on
values of all variables

in set H
ωi ≈H νi

P1 ≈H P2

P ≈H PAttackedProving:

Proving H-equivalence: Self-Composition

Challenges:

P ≈H PAttackedProving:

Proving H-equivalence: Self-Composition

Challenges:
1. Non-determinism,

e.g., accel ∪ brake

P ≈H PAttackedProving:

Proving H-equivalence: Self-Composition

Challenges:
1. Non-determinism,

e.g., accel ∪ brake

2. Duration of continuous
evolution, e.g.,

 d′ = − v, v′ = a & (v ≥ 0 ∧ t ≤ ϵ)

Main Results & Future Work

Thank you!

Future Work:
 We are working on a more expressive relational logic

1. A formal threat model
2. Two robustness properties
3. An equivalence relation for reasoning robustness
4. Two proof techniques
5. Three case studies

