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Our View

Formal approach is needed

Understanding the impact of a
compromised sensor is important

Need to reason about relational properties
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Three case studies .

Validation
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P is robustly safe: if P is safe, then P, .., is safe

r Attacked

(¢pre - [P ]¢safe) — (¢pre = [P Attacked]¢safe)

Robustness of high-integrity state
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Proving H-equivalence: Self-Composition

Proving: P~y Paucked

Challenges:

1. Non-determinism,
e.g., accel U brake

2. Duration of continuous
evolution, e.q.,
d=—v,v=a& v>20A1t<¢€)



Main Results & Future Work

A formal threat model

Two robustness properties

An equivalence relation for reasoning robustness
Two proof techniques

Three case studies

o w N e

Future Work:
We are working on a more expressive relational logic

Thank you!



