
Concise UC Zero-Knowledge
Proofs for Oblivious Updatable

Databases
Jan Camenisch*, Maria Dubovitskaya*, Alfredo Rial†

*Dfinity, {jan, maria}@dfinity.org

†SnT, University of Luxembourg, alfredo.rial.work@gmail.com

IEEE CSF 2021

22/06/2021

Motivation

2

In commit-and-prove protocols, a prover P commits to her input and then proves in zero-knowledge (ZK) to a verifier V
statements about the committed values. These steps are repeated and intertwined, i.e., commitments are updated,
new ones formed, and additional proofs executed.

We regard commitments as a tool to maintain a database between P and V with read and write operations.
• Write: When P commits to a value, the value is written into the database.
• Read: When P proves a statement about a committed value, the value is read from the database.

A database constructed with commitments guarantees the following properties.
• Hiding Property: values stored in the database are hidden from V.
• Binding Property: after a value is written into the database at a certain position, P cannot read a different value.
ZK proofs for reading and writing values ensure that those values remain hidden from V.

Motivation: Modularity

3

In commit-and-prove protocols, the task of maintaining a database between P and V and reading and writing values
into it is not separated from the task of proving statements about the values read or written. I.e., typically, P computes
a ZK proof to prove a statement about a committed value, which involves both reading a value from the database
and proving a statement about it.

To improve modularity, we propose to separate the task of maintaining a database between P and V from the task of
proving statements about the values read or written (or about the positions where the values are stored). This has
the following advantages:
• Simpler and more structured security proofs.
• Study the task of maintaining a database between P and V in isolation, which allows an easy comparison of

different techniques to maintain a database.

Motivation: Database Positions

4

If Pedersen-like commitments alone are used to construct a database, it is not possible to hide from V the
database positions where data is read or written. However, this is necessary in some protocols.

For example, in [Herrmann et al., WiSec 14], a protocol for a location-based service between a user and a service
provider is presented where the database consists of pairs

[position, value] = [location, counter]

When a user visits a location, the counter for that location needs to be incremented. User privacy requires that the
location remains hidden from the service provider. Therefore, in this protocol it is necessary to both:
• Read, write and prove statements about the counter (the value stored)
• Read, write and prove statements about the location (the database position where the value is read or written.)

We would like to construct a database in which hiding the database position and proving statements about can be done,
and with cost independent of the database size.

Contribution

5

• UC functionality 𝐹𝐶𝐷 for an oblivious an updatable committed database.
• Modular design of protocols using 𝐹𝐶𝐷.
• Construction Π𝐶𝐷 for 𝐹𝐶𝐷.

Functionality 𝐹𝐶𝐷

6

• We consider a simple database DB with entries of the form

[position,value] = [i,v]
We want a functionality 𝐹𝐶𝐷 in which
• 𝐹𝐶𝐷 interacts with a prover P and a verifier V.
• 𝐹𝐶𝐷 allows P to perform two operations.

• Read: P reads an entry [i,v] from the database.
• Write: P writes an entry [i,v] into the database.

Both 𝑖 and 𝑣 must remain hidden from V.

• For modularity, the tasks of proving statements about the position 𝑖 or the value 𝑣 must be done
by other functionalities 𝐹𝑍𝐾

𝑅 parameterized by the appropriate relations 𝑅.
• In a protocol that uses 𝐹𝐶𝐷 along with 𝐹𝑍𝐾

𝑅 , we need to ensure that the position 𝑖 and the value 𝑣 read or written
by P are equal to 𝑖 and 𝑣 sent to 𝐹𝑍𝐾

𝑅 by P.
• We used the method in [Camenisch et al., CRYPTO 2016] to ensure that the prover sends the same 𝑖 and 𝑣 to

𝐹𝐶𝐷 and to 𝐹𝑍𝐾
𝑅 .

• This method consists in sending committed inputs to the functionalities, where the commitments are computed
by a functionality 𝐹𝑁𝐼𝐶 for non-interactive commitments.

𝐹𝐶𝐷: Write Operation

7

𝐹𝐶𝐷

𝑃

𝐼𝑛𝑝𝑢𝑡: (𝒘𝒓𝒊𝒕𝒆, 𝑐𝑜𝑚𝑖 , 𝑖, 𝑜𝑝𝑒𝑛𝑖 , 𝑐𝑜𝑚𝑤, 𝑣, 𝑜𝑝𝑒𝑛𝑤)

𝐼𝑛𝑝𝑢𝑡

S

𝐼𝑛𝑝𝑢𝑡𝑠: (𝒘𝒓𝒊𝒕𝒆, 𝑞𝑖𝑑, 𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑤) 𝑂𝑢𝑡𝑝𝑢𝑡𝑠: (𝒘𝒓𝒊𝒕𝒆, 𝑞𝑖𝑑)

• Check if stored
(𝑞𝑖𝑑, 𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑤 , 𝑖, 𝑣, 𝑐𝑝)

• Check if 𝑐𝑝 = 𝑐𝑣 + 1
• Store [𝑖, 𝑣] in 𝐷𝐵
• 𝑐𝑣 ← 𝑐𝑣 + 1

• Verify commitments
• 𝑐𝑝 ← 𝑐𝑝 + 1
• Store

(𝑞𝑖𝑑, 𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑤 , 𝑖, 𝑣, 𝑐𝑝)

𝑂𝑢𝑡𝑝𝑢𝑡: (𝒘𝒓𝒊𝒕𝒆, comi, comw)

𝑉
𝑂𝑢𝑡𝑝𝑢𝑡

• 𝐹𝐶𝐷 guarantees that the position 𝑖 and the value 𝑣 committed to in 𝑐𝑜𝑚i and
𝑐𝑜𝑚𝑤 are written into DB.

𝐹𝐶𝐷: Read Operation

8

𝑃

𝐼𝑛𝑝𝑢𝑡: (𝒓𝒆𝒂𝒅, 𝑐𝑜𝑚𝑖 , 𝑖, 𝑜𝑝𝑒𝑛𝑖 , 𝑐𝑜𝑚𝑟 , 𝑣, 𝑜𝑝𝑒𝑛𝑟)

𝐼𝑛𝑝𝑢𝑡

S

𝐼𝑛𝑝𝑢𝑡𝑠: (𝒓𝒆𝒂𝒅, 𝑞𝑖𝑑, 𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑟) 𝑂𝑢𝑡𝑝𝑢𝑡𝑠: (𝒓𝒆𝒂𝒅, 𝑞𝑖𝑑)

• Check if
𝑞𝑖𝑑, 𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑟 , 𝑐𝑝

stored
• Check if 𝑐𝑝 = 𝑐𝑣

• Verify commitments
• Check if 𝑖, 𝑣 ∈ 𝐷𝐵
• Store (

)
𝑞𝑖𝑑,

𝑐𝑜𝑚𝑖 , 𝑐𝑜𝑚𝑟 , 𝑐𝑝

𝑂𝑢𝑡𝑝𝑢𝑡: (𝒓𝒆𝒂𝒅, comi, comr)

𝑉
𝑂𝑢𝑡𝑝𝑢𝑡

𝐹𝐶𝐷 guarantees that the position 𝑖 and the value 𝑣 committed to in 𝑐𝑜𝑚𝑖

and 𝑐𝑜𝑚𝑟 are stored in DB.

𝐹𝐶𝐷

Modular Design with 𝐹𝐶𝐷: Write Operation

9

Let’s consider a protocol that uses 𝐹𝐶𝐷 and the functionalities 𝐹𝑍𝐾
𝑅𝑖 , 𝐹𝑍𝐾

𝑅𝑣 . To write an entry into DB

the prover P and the verifier V proceed as follows.
• P and V run setup operations for 𝐹𝐶𝐷 and 𝐹𝑁𝐼𝐶. (Steps 1,2 and 3)
• P obtains commitments to a position 𝑖 and a value 𝑣 from 𝐹𝑁𝐼𝐶 . (Steps 4 and 5)
• P sends those commitments to 𝐹𝐶𝐷 to write 𝑖, 𝑣 into DB. (Step 6)
• V validates with 𝐹𝑁𝐼𝐶 the commitments received from 𝐹𝐶𝐷. (Steps 7 and 8)

Modular Design with 𝐹𝐶𝐷: Read Operation

10

To read an entry from DB and prove statements about it, P and V proceed as follows.
• P obtains commitments to a position 𝑖 and a value 𝑣 from 𝐹𝑁𝐼𝐶 . (New commitments are required if it is

necessary to hide if the position read is the same as the one previously written.) (Steps 9 and 10)
• P sends those commitments to 𝐹𝐶𝐷 to read 𝑖, 𝑣 from DB. (Step 11)
• V validates with 𝐹𝑁𝐼𝐶 the commitments received from 𝐹𝐶𝐷. (Steps 12 and 13)

• P uses 𝐹𝑍𝐾
𝑅𝑖 , 𝐹𝑍𝐾

𝑅𝑣 to prove statements about 𝑖 and 𝑣. (Steps 14 and 15)

Construction Π𝐶𝐷 for F𝐶𝐷

11

Π𝐶𝐷 is based on vector commitments (VC), which allow committing to a vector 𝑥 of values.
• Setup: An initial DB with entries [𝑖, 𝑣] is mapped to a vector 𝑥 by setting 𝑥 𝑖 = 𝑣 for all entries. P and V

compute a vector commitment 𝑣𝑐 to that vector.
• Read operation: To read an entry [𝑖, 𝑣], P computes an opening 𝑤 for position 𝑖 and proves in ZK that

𝑣𝑐 commits to 𝑣 at position 𝑖.
• Write operation: To write an entry [𝑖, 𝑣], P updates 𝑣𝑐 to 𝑣𝑐′, such that 𝑣𝑐′ commits to the same vector as

𝑣𝑐 except that now 𝑣 is committed at position 𝑖. P proves in ZK that 𝑣𝑐′ is an update of 𝑣𝑐.

VCs have the following efficiency properties:
• The size of 𝑣𝑐 and of an opening 𝑤 are independent of the vector size |𝑥|.
• The computation cost of updating 𝑣𝑐 or and opening 𝑤 is independent of |𝑥|.
• The computation cost of 𝑣𝑐 or and of 𝑤 grow linearly with |𝑥|.

Efficiency of Π𝐶𝐷

12

• Communication cost: the size of 𝑣𝑐 and 𝑤 are independent of the database size |𝐷𝐵|, and the size of ZK
proofs for read and write operations is also independent of |𝐷𝐵|. Therefore, the communication cost is
independent of |𝐷𝐵|.

• Computation cost: 𝑣𝑐 is computed at setup and later it is only updated.
• Worst case: P needs to read or write all the database positions throughout the protocol execution.

The cost of computing the openings 𝑤 grows quadratically with |𝐷𝐵|.
• Best case: The database |𝐷𝐵| is initialized to a vector of 0 and few positions need to be read or written.

The computation cost of 𝑣𝑐 is constant and the computation cost of each 𝑤 grows linearly with the
the number of non-zero components in 𝑣𝑐.

We describe privacy-preserving protocols that use Π𝐶𝐷 for e-commerce, billing and location-based services
in which the best case occurs. Therefore, those protocols handle large databases very efficiently.

