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Motivation

In commit-and-prove protocols, a prover P commits to her input and then proves in zero-knowledge (ZK) to a verifier V
statements about the committed values. These steps are repeated and intertwined, i.e., commitments are updated,
new ones formed, and additional proofs executed.

We regard commitments as a tool to maintain a database between P and V with read and write operations.
Write: When P commits to a value, the value is written into the database.
 Read: When P proves a statement about a committed value, the value is read from the database.

A database constructed with commitments guarantees the following properties.

* Hiding Property: values stored in the database are hidden from V.

* Binding Property: after a value is written into the database at a certain position, P cannot read a different value.
ZK proofs for reading and writing values ensure that those values remain hidden from V.



Motivation: Modularity

In commit-and-prove protocols, the task of maintaining a database between P and V and reading and writing values
into it is not separated from the task of proving statements about the values read or written. l.e., typically, P computes
a ZK proof to prove a statement about a committed value, which involves both reading a value from the database

and proving a statement about it.

To improve modularity, we propose to separate the task of maintaining a database between P and V from the task of

proving statements about the values read or written (or about the positions where the values are stored). This has

the following advantages:

e Simpler and more structured security proofs.

e Study the task of maintaining a database between P and V in isolation, which allows an easy comparison of
different techniques to maintain a database.



Motivation: Database Positions

If Pedersen-like commitments alone are used to construct a database, it is not possible to hide from V the
database positions where data is read or written. However, this is necessary in some protocols.

For example, in [Herrmann et al., WiSec 14], a protocol for a location-based service between a user and a service
provider is presented where the database consists of pairs

[position, value] = [location, counter]

When a user visits a location, the counter for that location needs to be incremented. User privacy requires that the
location remains hidden from the service provider. Therefore, in this protocol it is necessary to both:

* Read, write and prove statements about the counter (the value stored)

* Read, write and prove statements about the location (the database position where the value is read or written.)

We would like to construct a database in which hiding the database position and proving statements about can be done,
and with cost independent of the database size.




Contribution

* UC functionality Fp for an oblivious an updatable committed database.
* Modular design of protocols using F¢p.
* Construction Il for F¢p.



Functionality Fqp

* We consider a simple database DB with entries of the form

[position,value] = [i,v]
We want a functionality F-p in which
* Fp interacts with a prover P and a verifier V.
* F.p allows P to perform two operations.
* Read: P reads an entry [i,v] from the database.
* Write: P writes an entry [i,v] into the database.
Both i and v must remain hidden from V.

* For modularity, the tasks of proving statements about the position i or the value v must be done
by other functionalities F£ parameterized by the appropriate relations R.

* Ina protocol that uses Fp along with Ff,, we need to ensure that the position i and the value v read or written
by P are equal to i and v sent to FX, by P.

* We used the method in [Camenisch et al., CRYPTO 2016] to ensure that the prover sends the same i and v to
F-p and to Ff.

e This method consists in sending committed inputs to the functionalities, where the commitments are computed
by a functionality Fy ;- for non-interactive commitments.
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Output: (write, com;, com,,)



Fr-p: Read Operation
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Fqp guarantees that the position i and the value v committed to in com;

and com,. are stored in DB.



Let’s consider a protocol that uses F-p and the functionalities
the prover P and the verifier V proceed as follows.

Modular Design with Fqp: Write Operation
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K FZ}f,}’. To write an entry into DB

P and V run setup operations for Fp and Fy;c. (Steps 1,2 and 3)

P obtains commitments to a position i and a value v from Fy;¢. (Steps 4 and 5)
P sends those commitments to F-p to write [i, v] into DB. (Step 6)

V validates with Fy ;- the commitments received from F.p. (Steps 7 and 8)
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Modular Design with Fqp: Read Operation

To read an entry from DB and prove statements about it, P and V proceed as follows.

* P obtains commitments to a position i and a value v from Fy;-. (New commitments are required if it is
necessary to hide if the position read is the same as the one previously written.) (Steps 9 and 10)

* P sends those commitments to Fp to read [i, v] from DB. (Step 11)

* Vvalidates with Fy;- the commitments received from F.p. (Steps 12 and 13)

* Puses FZRIé, FZI}’ to prove statements about i and v. (Steps 14 and 15)
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Construction Il-p tfor F.p

[1-p is based on vector commitments (VC), which allow committing to a vector x of values.

 Setup: An initial DB with entries [i, v] is mapped to a vector x by setting x[i] = v for all entries. P and V
compute a vector commitment vc to that vector.

* Read operation: To read an entry [i, v], P computes an opening w for position i and proves in ZK that
vc commits to v at position i.

« Write operation: To write an entry [i, v], P updates vc to vc’, such that vc’ commits to the same vector as
vc except that now v is committed at position i. P proves in ZK that vc' is an update of vc.

VCs have the following efficiency properties:

* The size of vc and of an opening w are independent of the vector size |x|.

* The computation cost of updating vc or and opening w is independent of |x|.
e The computation cost of vc or and of w grow linearly with |x]|.



Efficiency of [lqp

e Communication cost: the size of vc and w are independent of the database size |[DB|, and the size of ZK
proofs for read and write operations is also independent of |[DB|. Therefore, the communication cost is
independent of |DB|.

* Computation cost: vc is computed at setup and later it is only updated.

* Worst case: P needs to read or write all the database positions throughout the protocol execution.
The cost of computing the openings w grows quadratically with |DB|.

* Best case: The database |DB] is initialized to a vector of 0 and few positions need to be read or written.
The computation cost of vc is constant and the computation cost of each w grows linearly with the
the number of non-zero components in vc.

We describe privacy-preserving protocols that use Il for e-commerce, billing and location-based services
in which the best case occurs. Therefore, those protocols handle large databases very efficiently.



