

Accountability in the Decentralised-Adversary Setting

Robert Künnemann, Deepak Garg, Michael Backes

Decentralised Adversary

Centralised Adversary

What we talk about when we talk about accountability

Who Keeps Whom Accountable?

informs

Who Keeps Whom Accountable?

defines "normal" behaviour

- everybody who steps out of line?
 - Requires complete communication. It's the Internet, duh!
- all causes (causing parties) of $\neg \phi$

Benign mistakes happen. Moral problem, but also: bad implementations

informs

From causation to accountability

vork

From causation to accountability

____oss of authenticity

It works (in the centralised setting)

We can analyse that stuff (in the centralised model)

Protocol spec + trace property

attack / verification / timeout

- Certificate Transparency
- OCSP Stapling
- MixNets
- Alethea/MixVote
- Accountable Algorithms

Limits of the centralisedadversary setting

The centralised adversary

Provocation - scenario 1

Provocation - scenario 2

- There is one cause, {A, C}.
- Anyone can derive "go!"
- Indistinguishable from A if
 - private
 communication
 possible
 - or code of A not known
- Not a modeling artefact

Provocation - scenario 2

img src: pngmart.com

- similar problems with causation in general (The Gardener & the Queen of England)
- causation considers different "worlds" and some are more plausible
- ordering of worlds
- "under
 - constrained" (e.g. radical Gardener could despise all inedible flora)

Optimality

- pick smallest possible verdict:
 - Iogical entailment when verdict interpreted as DNF $\{\{A,B\},\{C\}\} = A \land B \lor C$
 - {{A}} < {{A,C}} because $A \land C \implies A$
- pick simple explanations
 - includes knowledge-optimal

pick knowledge-optimal explanations, i.e., code for deviating parties

if A has knowledge to produce *()*, scenario 1 is knowledge-optimal

code cannot have conditionals (because we cannot see their effect)

Conclusion

Conclusion

- Accountability is identifying misbehaving parties
- "misbehaving party" = "party whose deviation caused $\neg \phi$ "
- the centralised setting is not w.l.o.g.:
 - silent assumptions: optimal information sharing and linear programs
 - guaranteed: weak fairness (party that is blamed deviated)
 - not guaranteed: weak completeness (catch member of each cause)
- verdict-optimality:
 - provides weak completeness
 - third party accountable
- all separating examples rely on signalling behavior unrelated to protocol maybe optimality principle is adequate (Occam's razor, optimality & defaults in
 - causation)
 - at least we know what we are doing now

applicable for tasks like access control, randomness generation or holding a

