

Verifying Accountability for Unbounded Sets of Participants 34th IEEE Computer Security Foundations Symposium

Kevin Morio, Robert Künnemann

CISPA Helmholtz Center for Information Security kevin.morio@cispa.de, robert.kuennemann@cispa.saarland

Trust

Accountability by Causation

- Accountability notion of Künneman et. al. (2019)
- Based on sufficient causation
- Accountability for φ
 - Meta property of a protocol
 - Allows identifying all parties causing a violation of $\boldsymbol{\phi}$

When is a party's behavior the cause of a violation?

Accountability by Causation

Counterfactual Relation

Actual Situation

Counterfactual Situation

Need relation between actual and counterfactual world!

Automated Verification of Accountability

How can accountability be verified?

\Rightarrow verdict(*t*) **provides accountability for** ϕ

First Translation (CSF 2019)

Case distinction on different verdicts

$$verdict(t) := \begin{cases} V_1 & \text{if } \omega_1(t) \\ \vdots \\ V_n & \text{if } \omega_n(t) \end{cases}$$

- Cases are exhaustive and exclusive
- Problems
 - 1. Finite number of verdicts
 - 2. Verdicts must be stated explicitly
 - \Rightarrow Only a bounded number of parties are supported

New Approach

• Case tests: Trace properties with free variables

 $\tau_1 := \exists data, i. LeakEmployee(e, data)@i$

 $\tau_2 := \exists data, i. \text{LeakAdminHacker}(a, h, data)@i$

• Verdict function: Union over instantiated case tests

Free variables

$$verdict(t) := \bigcup_{\tau \in \text{tests}} \left\{ \frac{fv(\tau)\rho}{| \exists \rho. t \vDash \tau\rho} \right\}$$

Challenge: Counterfactual Relation

Actual Trace

Counterfactual Traces

Implementation

test evidence:
 "Ex #i. Blame(m)@i"

```
lemma missing:
    evidence accounts for
    "All sid s ms #i. Send(<sid, s>, ms)@i
    ==> Ex m #j. Post(<sid, m>, '0', ms)@j"
```

```
lemma missing_evidence_suff: ...
/* ... */
lemma missing_evidence_single: ...
```

missing_evidence_suff: verified (16 steps)

missing_verif_empty: falsified - found trace (16 steps)

Case Studies

8 case studies (4 from prior work, 4 new)

Prior work

	Our pr	oposal	[21]	
WhoDunit (fixed)	√ 7	$52\mathrm{s}$	\checkmark (r_c)	8 24 s
			$\checkmark (r_w)$	7 11 s
Certificate Transparency (extended)	√ 27	$17\mathrm{s}$	\checkmark	31 21 s
OCSP Stapling (trusted resp.)	√ 7	$1\mathrm{s}$	\checkmark	7515s
OCSP Stapling (untrusted resp.)	X 7	$1\mathrm{s}$	×	$7 75 \mathrm{s}$

New case studies

Our proposal	1 role	2 roles	3 roles	4 roles	5 roles
Basic DMN (duplicate ciphertexts)	_	_	√13 26s		_
DMN + message tracing (first)	√ 78s	✓ 7 124s	✓ 7 1373 s	✓ 7 14178s	✓ 7 134160 s
DMN + message tracing (all)	√ 76s	X 7 12s	X 7 22 s	X 7 100 s	✗ 7 355 s
MixVote (unbounded)	√ 14 6s	—	—		
[21]	1 party	2 parties	3 parties	4 parties	5 parties
DMN + message tracing (first)	√ 77s	✓ 17 133s	✓ 46 2146 s	✓ 149 23 827 s	_* 544
DMN + message tracing (all)	✓ 74s	✗ 17 23 s	X 46 115 s	✗ 149 548 s	✗ 544 2922 s
MixVote (unbounded)**	√ 14 5s	√ 34 58s	✓ 92 2721 s	<u> </u>	<u> </u>

* No verification results due to memory exhaustion. ** Each party acts in the same role, that of the server.

Conclusion

- Automated verification of accountability supporting an unbounded number of participants
 - Necessary for analyzing real-world protocols
- Case tests as the key concept
 - Flexible definition of verdict functions
 - Improved readability
- Implemented in Tamarin (github.com/kevinmorio/tamarin-prover)
- Up to 5x faster than the previous approach
- Less effort to formulate accountability lemmas