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VERIFYING HYPERPROPERTIES
with TLA

Fred B.pSchneiderLeslie Lamport

[pause] What is a hyperproperty? c©



Hyperproperties

Ordinary property: True or false of an execution.

c© An ordinary property is a predicate that’s true or false of a single execution
of a system. c©

For example, the property that every request receives a response. c©

Verifying c© that a system satisfies a property c©
means showing that every execution of the system satisfies the property. c©

[ slide 4 ] 0 min 25 sec



Hyperproperties

Ordinary property: True or false of an execution.

c© An ordinary property is a predicate that’s true or false of a single execution
of a system. c©

For example, the property that every request receives a response. c©

Verifying c© that a system satisfies a property c©
means showing that every execution of the system satisfies the property. c©

[ slide 5 ] 0 min 25 sec



Hyperproperties

Ordinary property: True or false of an execution.

Example: Every request receives response.

c© An ordinary property is a predicate that’s true or false of a single execution
of a system. c©

For example, the property that every request receives a response. c©

Verifying c© that a system satisfies a property c©
means showing that every execution of the system satisfies the property. c©

[ slide 6 ] 0 min 25 sec



Hyperproperties

Ordinary property: True or false of an execution.

Verification:

S |= P
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means σ |= P

any execution of S property
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Hyperproperties

Hyperproperty: True or false of a set of executions.

A hyperproperty is a predicate that’s true or false on the set of executions of a system,
not just on single executions. c©

Some security conditions are naturally expressed as hyperproperties–for example c©

Observational Determinism or OD. OD assumes that an execution is a c©
sequence of states, and a state c© consists of two parts: c©
a public state and a secret state. c©
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Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

OD (Observational Determinisim)
state1 → state2 → state3 → · · ·

(4,“foo”)
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Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

OD (Observational Determinisim)
state1 → state2 → state3 → · · ·

(4,“foo”)

public secretp

a public state and a secret state. c©

OD requires that if any two executions c© have the same initial public states, then they
c© always have the same public states. c©

This is an assertion about pairs of executions, not about a single execution. c©
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Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

Another example is GNI (short for Generalized NonInterference). c©
It assumes that an execution is a sequence of public and secret events. c©
It’s a way of saying that the public events give you no information about the secret
events. c©
For any two possible system executions c©
[ slide 20 ] 1 min 30 sec



Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

public1 → secret1 → secret2 → public2 → · · ·

Another example is GNI (short for Generalized NonInterference). c©
It assumes that an execution is a sequence of public and secret events. c©
It’s a way of saying that the public events give you no information about the secret
events. c©
For any two possible system executions c©
[ slide 21 ] 1 min 30 sec



Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

public1 → secret1 → secret2 → public2 → · · ·

Public events must reveal nothing about secret events.

Another example is GNI (short for Generalized NonInterference). c©
It assumes that an execution is a sequence of public and secret events. c©
It’s a way of saying that the public events give you no information about the secret
events. c©
For any two possible system executions c©
[ slide 22 ] 1 min 30 sec



Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

public1 → secret1 → secret2 → public2 → · · ·

publica → secreta → publicb → publicc → · · ·

Another example is GNI (short for Generalized NonInterference). c©
It assumes that an execution is a sequence of public and secret events. c©
It’s a way of saying that the public events give you no information about the secret
events. c©
For any two possible system executions c©
[ slide 23 ] 1 min 30 sec



Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

public1 → secret1 → secret2 → public2 → · · ·

publica → secreta → publicb → publicc → · · ·

For any two possible system executions c©
GNI requires that you can get a possible system execution by combining c©
the public events of the first c© with the secret events of the second. c© c©

Again, it’s an assertion about more than one execution. c©
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Hyperproperties

Hyperproperty: True or false of a set of executions.

Some security conditions are hyperproperties.

GNI (Generalized NonInterference)

public1 → secret1 → secret2 → public2 → · · ·

publica → secreta → publicb → publicc → · · ·

public1 → secreta → public2 → · · ·
an assertion about
multiple executions

For any two possible system executions c©
GNI requires that you can get a possible system execution by combining c©
the public events of the first c© with the secret events of the second. c© c©

Again, it’s an assertion about more than one execution. c©
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Hyperproperties

Verification:

S |= H

system hyperproperty

How do we verify c© that a system satisfies a hyperproperty? c© c©
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Hyperproperties

Verification:

S |= H

system hyperproperty

?

How do we verify c© that a system satisfies a hyperproperty? c© c©
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Verifying Properties

S |= P A well-studied problem.

We want to use its solutions.

Two mappings: Ω : S → Ω(S )

system system

H̃ : H → H̃

hyperproperty property

Such that: S |= H ≡ Ω(S ) |= H̃

Verifying ordinary properties c© has been well-studied. c©

We want to make use of methods and tools developed to solve it. c©

So people have reduced verifying hyperproperties to verifying ordinary properties.
Here’s how. c© Define two mappings. c©
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Verifying Hyperproperties by Verifying Properties

Two mappings: Ω : S → Ω(S )

system system

H̃ : H → H̃

hyperproperty property

Such that: S |= H ≡ Ω(S ) |= H̃

Define two mappings. c©

The first maps a system S to another systems Ω(S). c©

The second maps a hyperproperty H to an ordinary property H -tilde. c©

These mapping are defined so that c© system S satisfies hyperproperty H c©

if and only if the system Ω(S) satisfies the ordinary property H -tilde. c©
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Self-Composition

If H is an assertion about n executions

then Ω(S ) = S ⊗ S . . . ⊗ S

Verification has been done this way with a method called self-composition c©

where if hyperproperty H is an assertion about n executions c©

then Ω(S) is a big system that executes n copies of S in lock-step c©

and H tilde is H restated in terms of executions of the individual
processes S in an execution of Ω(S).

[ slide 42 ] 2 min 50 sec



Self-Composition

If H is an assertion about n executions

then Ω(S ) = S ⊗ S . . . ⊗ S

Verification has been done this way with a method called self-composition c©

where if hyperproperty H is an assertion about n executions c©

then Ω(S) is a big system that executes n copies of S in lock-step c©

and H tilde is H restated in terms of executions of the individual
processes S in an execution of Ω(S).

[ slide 43 ] 2 min 50 sec



Self-Composition

If H is an assertion about n executions

then Ω(S ) = S ⊗ S . . . ⊗ S
n copies

executed in lock-step

Verification has been done this way with a method called self-composition c©

where if hyperproperty H is an assertion about n executions c©

then Ω(S) is a big system that executes n copies of S in lock-step c©

and H tilde is H restated in terms of executions of the individual
processes S in an execution of Ω(S).

[ slide 44 ] 2 min 50 sec



Self-Composition

If H is an assertion about n executions

then Ω(S ) = S ⊗ S . . . ⊗ S

H̃ = H stated in terms of executions
of individual processes S

Verification has been done this way with a method called self-composition c©

where if hyperproperty H is an assertion about n executions c©

then Ω(S) is a big system that executes n copies of S in lock-step c©

and H tilde is H restated in terms of executions of the individual
processes S in an execution of Ω(S).

[ slide 45 ] 2 min 50 sec



Self-Composition

Example: OD

Ω(S ) = S ⊗ S

For example, suppose the hyperproperty H is Observational Determinism. c©

Then Ω(S) consists of two copies of S run in lock step, and c©

H tilde asserts that, if those two copies of S start with equal public states, c©

then they will always have equal public states. c©
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Example: OD

Ω(S ) = S ⊗ S

ÕD = If the copies of S start with equal
public states then they always have
equal public states.

For example, suppose the hyperproperty H is Observational Determinism. c©

Then Ω(S) consists of two copies of S run in lock step, and c©

H tilde asserts that, if those two copies of S start with equal public states, c©

then they will always have equal public states. c©

[ slide 48 ] 3 min 12 sec



Self-Composition

Example: OD

Ω(S ) = S ⊗ S
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Self-Composition – The Problem

there exists a 3rd behavior.

Have to verify:
described by GNI

There’s a problem with this kind of Self-Composition. c©

It doesn’t work for some security hyperproperties, including GNI. c©

GNI says that, for any two behaviors of S c© there exists a
3rd behavior of S satisfying a certain condition. c©

With self-composition c©
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Self-Composition – The Problem

GNI: For any two behaviors, there exists a 3rd behavior.

Have to verify:
described by GNI

public1 → secret1 → secret2 → public2 → · · ·

publica → secreta → publicb → publicc → · · ·

public1 → secreta → public2 → · · ·

With self-composition c© these two behaviors c© are described by this big
system Ω(S). c©

The 3rd behavior of S c© is described by GNI, c©

So GNI-tilde must contain system S , which it can’t because
GNI-tilde is a property, and how can you put a system in a property?
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GNI: For any two behaviors, there exists a 3rd behavior.

Have to verify: S ⊗ S |= G̃NI
described by GNI
must contain another copy of system S
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So GNI-tilde must contain system S , which it can’t because
GNI-tilde is a property, and how can you put a system in a property?
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Self-Composition – Our Solution

Here is our solution c© It works for some additional security properties,
including GNI. c©
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Self-Composition – Our Solution

Works for GNI and . . .

Here is our solution c© It works for some additional security properties,
including GNI. c©
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TLA (temporal logic of actions)

We use the temporal logic TLA. c©
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TLA (temporal logic of actions)

Used by Microsoft, Amazon Web Services, Oracle, . . .

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

TLA has industrial-strength tools and is used by engineers who build large, distributed
systems. c©

TLA describes systems, as well as properties, as formulas. c©

System S satisfies property P c© means that the formula, S implies P is true. c©

The system obtained by running n copies of S in lock-step is defined as follows. c©

The definition begins with S (of x -sub-1), which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

TLA has industrial-strength tools and is used by engineers who build large, distributed
systems. c©

TLA describes systems, as well as properties, as formulas. c©

System S satisfies property P c© means that the formula, S implies P is true. c©

The system obtained by running n copies of S in lock-step is defined as follows. c©

The definition begins with S (of x -sub-1), which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

TLA has industrial-strength tools and is used by engineers who build large, distributed
systems. c©

TLA describes systems, as well as properties, as formulas. c©

System S satisfies property P c© means that the formula, S implies P is true. c©

The system obtained by running n copies of S in lock-step is defined as follows. c©

The definition begins with S (of x -sub-1), which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

TLA has industrial-strength tools and is used by engineers who build large, distributed
systems. c©

TLA describes systems, as well as properties, as formulas. c©

System S satisfies property P c© means that the formula, S implies P is true. c©

The system obtained by running n copies of S in lock-step is defined as follows. c©

The definition begins with S (of x -sub-1), which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

TLA has industrial-strength tools and is used by engineers who build large, distributed
systems. c©

TLA describes systems, as well as properties, as formulas. c©

System S satisfies property P c© means that the formula, S implies P is true. c©

The system obtained by running n copies of S in lock-step is defined as follows. c©

The definition begins with S (of x -sub-1), which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)
S with new set x1 of variables

The definition begins with S (of x -sub-1) which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©

Formula S (of x -sub-1) asserts that the values assumed by the variables of x -sub-1
during an execution satisfy the specification of system S . c©

And similarly for S of x -sub-2 through n, all different sets of variables. c©

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)
S with new set x1 of variables
that satisfy spec of S

The definition begins with S (of x -sub-1) which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©

Formula S (of x -sub-1) asserts that the values assumed by the variables of x -sub-1
during an execution satisfy the specification of system S . c©

And similarly for S of x -sub-2 through n, all different sets of variables. c©

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)
S with new set xn of variables

The definition begins with S (of x -sub-1) which is the formula obtained by substituting
a new set of variables, x -sub-1, for the variables of S . c©

Formula S (of x -sub-1) asserts that the values assumed by the variables of x -sub-1
during an execution satisfy the specification of system S . c©

And similarly for S of x -sub-2 through n, all different sets of variables. c©

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)
parallel composition of n copies of S

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©

and K asserts that the copies run in lock-step. I don’t have time to explain how K is
defined. c©

It’s now easy to define define the property asserting that S satisfies GNI. c©

Here are the 2 copies of S that execute in lock-step.
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)
copies run in lock-step

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©

and K asserts that the copies run in lock-step. I don’t have time to explain how K is
defined. c©

It’s now easy to define define the property asserting that S satisfies GNI. c©

Here are the 2 copies of S that execute in lock-step.
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

S |= GNI ≡ |= (S (x1) ∧ S (x2) ∧ K (x1, . . . , xn)

⇒ ∃∃∃∃∃∃ x3 : S (x3) ∧ L(x1, x2, x3) )

In TLA conjunction is parallel composition, so this is a system composed of n copies of
system S executing in parallel. c©

and K asserts that the copies run in lock-step. I don’t have time to explain how K is
defined. c©

It’s now easy to define define the property asserting that S satisfies GNI. c©

Here are the 2 copies of S that execute in lock-step.
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

S |= GNI ≡ |= (S (x1) ∧ S (x2) ∧ K (x1, . . . , xn)

⇒ ∃∃∃∃∃∃ x3 : S (x3) ∧ L(x1, x2, x3) )2 copies of S run in lock-step

Here are the 2 copies of S that execute in lock-step.
This composite system must satisfy–that is, this formula must imply– c©

that there exists another execution of S
represented by the values of variables x -sub 3 c©

with the right relation among the 3 executions—
that is, the values of the public variables of x -sub 3 equal those of x -sub 1
and the values of its secret variables equal those of x -sub-2. c© c©

[ slide 74 ] 5 min 56 sec



TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

S |= GNI ≡ |= (S (x1) ∧ S (x2) ∧ K (x1, . . . , xn)

⇒ ∃∃∃∃∃∃ x3 : S (x3) ∧ L(x1, x2, x3) )
exists a 3rd execution of S

Here are the 2 copies of S that execute in lock-step.
This composite system must satisfy–that is, this formula must imply– c©

that there exists another execution of S
represented by the values of variables x -sub 3 c©

with the right relation among the 3 executions—
that is, the values of the public variables of x -sub 3 equal those of x -sub 1
and the values of its secret variables equal those of x -sub-2. c© c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

S |= GNI ≡ |= (S (x1) ∧ S (x2) ∧ K (x1, . . . , xn)

⇒ ∃∃∃∃∃∃ x3 : S (x3) ∧ L(x1, x2, x3) )
relation among the 3 executions

Here are the 2 copies of S that execute in lock-step.
This composite system must satisfy–that is, this formula must imply– c©

that there exists another execution of S
represented by the values of variables x -sub 3 c©

with the right relation among the 3 executions—
that is, the values of the public variables of x -sub 3 equal those of x -sub 1
and the values of its secret variables equal those of x -sub-2. c© c©
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TLA

Properties & systems are formulas.

S |= P ≡ |= (S ⇒ P)

S ⊗ S . . . ⊗ S equals

S (x1) ∧ S (x2) . . . ∧ S (xn) ∧ K (x1, . . . , xn)

S |= GNI ≡ |= (S (x1) ∧ S (x2) ∧ K (x1, . . . , xn)

⇒ ∃∃∃∃∃∃ x3 : S (x3) ∧ L(x1, x2, x3) )

Here are the 2 copies of S that execute in lock-step.
This composite system must satisfy–that is, this formula must imply– c©

that there exists another execution of S
represented by the values of variables x -sub 3 c©

with the right relation among the 3 executions—
that is, the values of the public variables of x -sub 3 equal those of x -sub 1
and the values of its secret variables equal those of x -sub-2. c© c©
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It’s Not So Easy

TLA models executions as sequences of states.

GNI based on executions as sequences of events.

Translate events to states by: event = state1 → state2

Unfortunately, expressing GNI is not this easy. c©

TLA, like most temporal logics, models a system execution as a sequence of
states. c©

GNI and some other security hyperproperties were originally described in
terms of executions as sequences of events. c© c©

To translate from events to states, we model an event as a change of state.
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It’s Not So Easy

TLA models executions as sequences of states.

GNI based on executions as sequences of events.

Translate events to states by: event = state1 → state2

Unfortunately, expressing GNI is not this easy. c©

TLA, like most temporal logics, models a system execution as a sequence of
states. c©

GNI and some other security hyperproperties were originally described in
terms of executions as sequences of events. c© c©

To translate from events to states, we model an event as a change of state.
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It’s Not So Easy

TLA models executions as sequences of states.

GNI based on executions as sequences of events.

Translate events to states by: event = state1 → state2

Unfortunately, expressing GNI is not this easy. c©

TLA, like most temporal logics, models a system execution as a sequence of
states. c©

GNI and some other security hyperproperties were originally described in
terms of executions as sequences of events. c© c©

To translate from events to states, we model an event as a change of state.
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It’s Not So Easy

TLA models executions as sequences of states.

GNI based on executions as sequences of events.

public1 → secret1 → secret2 → public2 → · · ·

Public events must reveal nothing about secret events.

Translate events to states by: event = state1 → state2

Unfortunately, expressing GNI is not this easy. c©

TLA, like most temporal logics, models a system execution as a sequence of
states. c©

GNI and some other security hyperproperties were originally described in
terms of executions as sequences of events. c© c©

To translate from events to states, we model an event as a change of state.
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It’s Not So Easy

TLA models executions as sequences of states.

GNI based on executions as sequences of events.

Translate events to states by: event = state1 → state2

Unfortunately, expressing GNI is not this easy. c©

TLA, like most temporal logics, models a system execution as a sequence of
states. c©

GNI and some other security hyperproperties were originally described in
terms of executions as sequences of events. c© c©

To translate from events to states, we model an event as a change of state.
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

(4,“foo”)

public secretp

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

(4,“foo”)

public secretp

A public event

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

(9,“foo”)

public secretp

A public event

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

(9,“foo”)

public secretp

A secret eventp

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

(9,“far ”)

public secretp

A secret eventp

To translate GNI, we assume a state is a (public-state, secret-state) pair. c©
Like this. c©

A public event c© is one that changes the public state. c©

A secret event c© is one that changes the secret state. c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → public1 → secret1 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → public1 → secret1 → secret2 → public2 → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → public1 → secret1 → secret2 → public2 → · · ·
· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

For GNI, assume a state is (public state, secret state) .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

So this sequence of events c© becomes this sequence of states. c©
This public event changes the public state. c© This secret event changes the secret
state. c©
So every event is either a public event or a secret event. c©
And the events are replaced by the state changes. c©
And similarly, this sequence of events c©
becomes this sequence of states. c© c©
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It’s Not So Easy

GNI : If these system executions are run in lock-step
then there exists a 3rd system execution. . .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

· · · → public1 → secret1 → public2t → · · ·

· · · → public1 → secret1 → secret → · · ·

The TLA version of GNI which I showed you before asserts that,
if these two system executions are run in lockstep c©
Then there exists a 3rdsystem execution c©
whose public states come from the 1st execution c©
and whose secret states come from the 2nd execution. c©
But there’s a problem here. c©
This state change changes the public state so it’s is a public event. c©

[ slide 98 ] 7 min 50 sec



It’s Not So Easy

GNI : If these system executions are run in lock-step
then there exists a 3rd system execution. . .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s3) → · · ·
· · · → public1 → secret1 → public2t → · · ·

· · · → public1 → secret1 → secret → · · ·

The TLA version of GNI which I showed you before asserts that,
if these two system executions are run in lockstep c©
Then there exists a 3rdsystem execution c©
whose public states come from the 1st execution c©
and whose secret states come from the 2nd execution. c©
But there’s a problem here. c©
This state change changes the public state so it’s is a public event. c©
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It’s Not So Easy

GNI : If these system executions are run in lock-step
then there exists a 3rd system execution. . .

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s3) → · · ·
? ? ? ?· · · → public1 → secret1 → public2t → · · ·

· · · → public1 → secret1 → secret → · · ·

The TLA version of GNI which I showed you before asserts that,
if these two system executions are run in lockstep c©
Then there exists a 3rdsystem execution c©
whose public states come from the 1st execution c©
and whose secret states come from the 2nd execution. c©
But there’s a problem here. c©
This state change changes the public state so it’s is a public event. c©
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It’s Not So Easy

GNI : If these system executions are run in lock-step
then there exists a 3rd system execution. . .
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So this isn’t a system execution, because GNI assumes that the system allows
state changes that are either public or secret events, but not both. c©
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It’s Not So Easy

GNI : If any two system executions are run in lock-step
then . . .

This definition is wrong.

This problem is inherent in our TLA definition of GNI. c©

The definition is wrong. c©
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This problem is inherent in our TLA definition of GNI. c©

The definition is wrong. c©
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Getting It Right

Instead of being in lock-step, the executions should be:
GNI assumes they are the same to public users.

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p3, s2) → · · ·

· · · → (p1, s1) → (p2, s1) → (p2, s2) → (p2, s3) → (p3, s3) → · · ·

Instead of having to execute the two copies of the system in lock-step c©
A correct definition of GNI should allow them to be executed like this. c©
GNI assumes these two executions appear the same to public users c©
who just see this. c©
Most formalisms consider these to be different executions because of this extra state. c©
but that means users can tell when secret events occur between public events. c©
TLA considers these two executions to be the same because that extra step leaves the
state seen by the user unchanged. c©
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Instead of having to execute the two copies of the system in lock-step c©
A correct definition of GNI should allow them to be executed like this. c©
GNI assumes these two executions appear the same to public users c©
who just see this. c©
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TLA

TLA seems strange because steps that leave the state unchanged
can’t be required or forbidden by a formula.

This helps ensure that a spec can assert only what it should.

A spec of an hour-minute clock
it doesn’t display .

TLA at first seems strange to most people because steps that leave the state
unchanged can’t be required or forbidden by a TLA formula. c©
But that’s one reason TLA is simple. c©
This restriction helps ensure that a spec can assert only what it should. c©
For example, a specification of an hour minute clock should not assert that the clock c©
does not display the temperature c© or doesn’t display seconds. c©
A TLA spec can’t say that. c©
That’s why implementation is simply implication. c©
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TLA

TLA is simple because steps that leave the state unchanged
can’t be required or forbidden by a formula.

This ensures that a spec can assert only what it should.

A main contribution of the paper:

A main contribution of the paper is that c©

This feature of TLA is also important for expressing hyperproperties. c©
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TLA

Steps that leave the state unchanged can’t be required or forbidden.

Provides flexibility in aligning executions.

Enables simple specifications of GNI and other hyperproperties.

You’ll have to read the paper to find out how it’s done.

This feature c© provides flexibility in aligning executions. c©

It enables simple specifications of a class of hyperproperties that includes
GNI. c©

You’ll have to read the paper to find out how it’s done. It’s not obvious. c©
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In the Paper

The details

Illustrated with two toy examples that satisfy GNI

TLA specs of: Noninference
Noninterference
Possibilisitic Noninterference
Input/output hyperproperties

When a hyperproperty is preserved by refinement

Relation to machine-checked TLA proof of OD for a real system

What’s in the paper? c©

I’ve been doing a lot of hand-waving. The paper contains the details. c©

They’re explained with two toy systems that satisfy GNI. c©

There are TLA specifications of these other security hyperproperties. c©

There’s a characterization of when a hyperproperty is preserved under refinement. c©

The paper contains toy examples, but TLA is not a toy.
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In the Paper

The details

Illustrated with two toy examples that satisfy GNI

TLA specs of: Noninference
Noninterference
Possibilisitic Noninterference
Input/output hyperproperties

When a hyperproperty is preserved by refinement

Relation to machine-checked TLA proof of OD for a real system

The paper contains toy examples, but TLA is not a toy.

Others have written a machine-checked TLA proof of observational determinism
for a real-time message passing system that was later commercialized.

The paper explains the relation of that work to ours. c©
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On the Web

TLA specs of the examples in the paper

TLA documentation & tools:

https://lamport.azurewebsites.net/tla/tla.html

On the Web, you can find c©

Model-checked TLA specifications of the examples in the paper. c©

And all about TLA so you can try it yourself.

Thank you.
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