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Zero-Knowledge Protocols

• Two parties: A Prover and a Verifier.

• Prover wants to convince the Verifier that he knows a secret x.

• The Verifier should not learn anything about the secret.

• The secret is part of a relation:

• R = {(x, y) : f (x) = y}

Prover Verifier

(x, y,R) (y,R)

We require that the Verifier always accepts if the Prover knows the secret and

follows the protocol.
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Multi-Party Computation

• N parties want to jointly and securely compute a N-ary function f (x1, . . . , xN).
• Each party supplies a private input xi.

• Everyone learns f (x1, . . . , xn). Parties should not learn any private inputs.

• f is a circuit. Let f
j
i
denote the function party i uses to compute gate j.

• Needs to be correct and private.

• Correctness: MPC(f , x1, . . . , xN) = f (x1, . . . , xN)

• Privacy: Parties should not learn each others inputs.

• We only consider semi-honest security.
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What is MPC-in-the-head

• A technique to construct zero-knowledge proofs for any NP-relation [IKOS07]

• Uses MPC and commitment schemes as the underlying primitives.

• Key insight is that the Prover can emulate all parties.

• Initially mostly of theoretical interest.

• Recent efficiency gains in implementations.

• Can in some scenarios offer ZK proofs competitive with SNARKS.

• Post-quantum secure signature scheme [CDGORR17].

• ZKBoo [GMO16], Picnic [CDGORR17], Banquet [BGKOSZ21], BBQ [GMOS19], and

others.
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Zero-Knowledge from MPC
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Motivation

• This flavour of the MPC-in-the-head approach consists of two components:

1. A MPC protocol

• with a method for validating the computations of a subset of the parties in the

MPC protocol.

2. A general purpose transformation protocol mapping MPC to zero-knowledge

Recent works originating from this approach [GMO16, CDGORR17, KKW18] prove

security of the construction as a whole.

Can our security proofs reflect this inherent modularity?

6



Why do we need modular security proofs?
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Modular security proofs

• There are some subtle challenges

• Does verification of the views imply a fixed input?

• Can correctness or privacy ensure that the Verifier will accept the views?

• We overcome these challenges by extending the definition of MPC protocols.

• Our class of MPC protocols are a collection of procedures.

• With extended security properties based on the procedures.
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Communication Pattern (of ZKBoo)

Verification needs to reason about intermediate computations.
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New Security definitions

Definition (Verifiability)

A MPC protocol is verifiable if the given validation procedure always outputs

true for any (valid) subset of views produced by the MPC protocol.

Verifiability ensure the Verifier always accept if the Prover knows the secret and

follows the protocol.
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Formalisation

These modular security proofs facilitated our formalization in EasyCrypt.

• We define our extended MPC notion in the proof assistant.

• we formalize the ZKBoo MPC protocol and its zero-knowledge transformation.

• Until now MPC and ZK were only formalized separately.

• First time a MPC formalisation has been used as a building block.

With formal verification we can precisely state our security requirement on

protocol implementations. Moreover, we can prove security results in our chosen

model of computation.
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Formalisation Structure

A MPC protocol is a generic interface exposing functions required by the

MPC-in-the-head transformation.

The Zero-Knowledge instantiates the MPC protocol with the required types.

ZK-ZKBooMPC

Commitment

Scheme

ZKBoo MPC
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Conclusion

• Modularity is needed to manage complexity.

• Supports proof effort.

• Allows us to freely compose decomposition protocols with zero-knowledge

transformations.

• Side effect: defines a common interface between decomposition and

zero-knowledge.

• Formal verification:

• EasyCrypt Formalization of modular framework for MPC-ith and ZKBoo as a

concrete instance.
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