Mechanised Models and Proofs for Distance-Bounding

Ioana Boureanu, Catalin Dragan, François Dupressoir, **David Gerault**,
Pascal Lafourcade

Introduction

Questions:

- What if A knows more than one key?
- Can we model physicalities (time, distance) in a computational framework?

Distance Bounding Protocols

Classical Threats P (y) DF/DH A (x) V (x,y) MF V (x) P (x) (TF) A (x) V (x) **A2**

FlexiDB: A Motivating Example

FlexiDB: Party Corruption

FlexiDB: Network Corruption

- Dummy
 - Send/receive within range
- Amplifier
 - Send/receive from afar
- Injector
 - Send/receive/block/overwrite within range
- Full
 - All of the above

FlexiDB: An Overview

- All parties have a position in the metric space
 - Parties = provers, verifiers, 2 adversarial entities
- Adversary = $\{A_P, A_V\}$
 - Depending on the threat
 - Parametrised by channel/party corruption abilities
- A Challenger provides Oracles to A:
 - Join
 - Move
 - Replace
 - Start session

FlexiDB Threats: GMF

- Learning phase: (Loc(A_P, A_V), dP, dV) <- A
- A wins if V accepts an authentication on x
- No new attacks
 - (Except for toy protocols)

- Learning phase: (Loc(A_P), dP, dV) <- A
- A wins if V accepts an authentication on x
- New attacks
 - Motivating example (n-weak Insider, full)
 - PRF programming attacks (1-weak Insider, full)
 - TF-resistant protocols (1-strong Insider, amplifier)
 - EMV-RRP-V2 (1-weak Insider, full)

Easycrypt Mechanisation

- Easycrypt modules: Environment, P/V, OP,V
- Environment with physicalities
 - Time
 - Global clock, real
 - Get_time, Add_time
 - Locations
 - Real (1d)
 - Get_locations, Set_locations
 - Distance |x-x'|
- Models a form of Outsider, full type GMF
 - Adv can only interact w/ the prover once during attack phase
 - Single prover/verifier
- Tested on EMV-RRP

Conclusion

- New model with more granularity
 - On party corruption
 - On network corruption
 - New attacks
 - Maybe too strong, but interesting for future applications
 - Mechanisation in EC
 - As an proof-of-concept on modeling physicalities in EC
 - Working model for EMV-RRP

Thank you!

