
SSProve: A Foundational Framework for Modular
Cryptographic Proofs in Coq

Carmine Abate1 Philipp G. Haselwarter2 Exequiel Rivas3 Antoine Van

Muylder4 Théo Winterhalter1

Cătălin Hrit,cu1 Kenji Maillard5 Bas Spitters2

34th Computer Security Foundation Symposium,

24.06.2021

This work was in part supported by the European Research Council under ERC Starting Grant SECOMP (715753), by AFOSR grant Homotopy type

theory and probabilistic computation (12595060), and by the Concordium Blockchain Research Center at Aarhus University. Antoine Van Muylder

holds a PhD Fellowship from the Research Foundation – Flanders (FWO).

1MPI-SP 2Aarhus University 3Inria Paris 4Vrije Universiteit Brussel 5Inria Rennes

https://erc.europa.eu

Why SSProve?

Motivation:

• Shoup, Bellare and Rogaway (2004): “Crisis of rigour” in cryptography.

Proposal: Game-playing proofs

• Monolithic game-based proofs can become intractable

• State-Separating Proofs (SSP) from high-level structure of miTLS paper proofs

(Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Contributions:

• Give precise meaning to SSP and formalise it in Coq prover

• Modular language, logic & semantics

• Theorem connecting high-level SSP arguments and low-level program logic

• Approach validated by formalising several examples

This paper: PRF, ElGamal. Github: KEM-DEM, Σ-protocols (with N. Sidorenco).

1

Why SSProve?

Motivation:

• Shoup, Bellare and Rogaway (2004): “Crisis of rigour” in cryptography.

Proposal: Game-playing proofs

• Monolithic game-based proofs can become intractable

• State-Separating Proofs (SSP) from high-level structure of miTLS paper proofs

(Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Contributions:

• Give precise meaning to SSP and formalise it in Coq prover

• Modular language, logic & semantics

• Theorem connecting high-level SSP arguments and low-level program logic

• Approach validated by formalising several examples

This paper: PRF, ElGamal. Github: KEM-DEM, Σ-protocols (with N. Sidorenco).
1

Why SSProve?

Motivation:

• Shoup, Bellare and Rogaway (2004): “Crisis of rigour” in cryptography.

Proposal: Game-playing proofs

• Monolithic game-based proofs can become intractable

• State-Separating Proofs (SSP) from high-level structure of miTLS paper proofs

(Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Contributions:

• Give precise meaning to SSP and formalise it in Coq prover

• Modular language, logic & semantics

• Theorem connecting high-level SSP arguments and low-level program logic

• Approach validated by formalising several examples

This paper: PRF, ElGamal. Github: KEM-DEM, Σ-protocols (with N. Sidorenco).
1

Requirements: IND-CPA security for PRF based encryption

To prove...

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if key = ⊥ then

key <$ uniform {0, 1}n

(r,c) ← enc(key , msg)

return (r,c)

ε
≈

package: IND-CPA1

mem: key : option KEY

ENC(msg):

if key = ⊥ then

key <$ uniform {0, 1}n

msg_rnd <$ uniform {0, 1}n

(r,c) ← enc(key , msg_rnd)

return (r,c)

We need to...

1 pick a proof assistant

2 define a core language (syntax, semantics)

3 prove code-level reasoning principles (pRHL)

4 define packages, package composition

5 define games, adversaries, and security

6 prove high-level reasoning principles (SSP)

2

Requirements: IND-CPA security for PRF based encryption

To prove...

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if key = ⊥ then

key <$ uniform {0, 1}n

(r,c) ← enc(key , msg)

return (r,c)

ε
≈

package: IND-CPA1

mem: key : option KEY

ENC(msg):

if key = ⊥ then

key <$ uniform {0, 1}n

msg_rnd <$ uniform {0, 1}n

(r,c) ← enc(key , msg_rnd)

return (r,c)

We need to...

1 pick a proof assistant

2 define a core language (syntax, semantics)

3 prove code-level reasoning principles (pRHL)

4 define packages, package composition

5 define games, adversaries, and security

6 prove high-level reasoning principles (SSP) 2

Coq – a mature formal proof management system

Provides a formal language for

• mathematical definitions & theorems

• executable algorithms (pure, i.e. no state/probabilities etc)

Example libraries

• computer science: CompCert (C compiler), Verified Software Toolchain

(verification of C programs), Fiat-Crypto (fast cryptographic primitives)

• mathematics: 4 colour theorem, Feit-Thompson theorem, real analysis

Architecture

• trusted code base = clearly delimited kernel

• tactic language for programming automation

• easy installation via package manager

3

SSProve/Core language

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if !key == ⊥ then

k <$ uniform {0, 1}n

key := k

(r,c) ← enc(key , msg)

return (r,c)

!` read from memory location `

` := v write v to memory location `

x <$ D sample from (sub-) distribution D

x ← p(a) call imported procedure p on value a

c1 ; c2 sequencing (omitted at end of line)

return v embed v from Coq’s ambient algorith. language

Under the hood, in Coq:

Inductive code A = ret (x : A) | call (p : op) (x : src p) (κ : tgt p → code A) | ...

Derived

definitions:
assert(b):

if b == false then

BOOM <$ null distr {0,1}

return BOOM

for(n, c):

if n > 0 then

c n

for(n-1, c)

...

4

SSProve/Core language

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if !key == ⊥ then

k <$ uniform {0, 1}n

key := k

(r,c) ← enc(key , msg)

return (r,c)

!` read from memory location `

` := v write v to memory location `

x <$ D sample from (sub-) distribution D

x ← p(a) call imported procedure p on value a

c1 ; c2 sequencing (omitted at end of line)

return v embed v from Coq’s ambient algorith. language

Under the hood, in Coq:

Inductive code A = ret (x : A) | call (p : op) (x : src p) (κ : tgt p → code A) | ...

Derived

definitions:
assert(b):

if b == false then

BOOM <$ null distr {0,1}

return BOOM

for(n, c):

if n > 0 then

c n

for(n-1, c)

...

4

SSProve/Core language

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if !key == ⊥ then

k <$ uniform {0, 1}n

key := k

(r,c) ← enc(key , msg)

return (r,c)

!` read from memory location `

` := v write v to memory location `

x <$ D sample from (sub-) distribution D

x ← p(a) call imported procedure p on value a

c1 ; c2 sequencing (omitted at end of line)

return v embed v from Coq’s ambient algorith. language

Under the hood, in Coq:

Inductive code A = ret (x : A) | call (p : op) (x : src p) (κ : tgt p → code A) | ...

Derived

definitions:
assert(b):

if b == false then

BOOM <$ null distr {0,1}

return BOOM

for(n, c):

if n > 0 then

c n

for(n-1, c)

...

4

Rules of pRHL

Each rule is a theorem in Coq.

Details on semantics: Antoine Van Muylder’s video presentation on SSProve at

TYPES 2021.

c : code L A
reflexivity

� {{{m0 = m1}}} c ∼ c {{{(r0, r1). m0 = m1 ∧ r0 = r1}}}

c0 : code L0 A0 c1 : code L1 A1

f0 : A0 → code L0 B0 f1 : A1 → code L1 B1

� {{{pre}}} c0 ∼ c1 {{{µ}}}
∀a0a1. � {{{(h0, h1). µ(a0, h0)(a1, h1)}}} (f0 a0) ∼ (f1 a1) {{{post}}}

seq
� {{{pre}}} a0 ← c0; ; f0 a0 ∼ a1 ← c1; ; f1 a1 {{{post}}}

c0 : code L A0 c1 : code L A1

� {{{I}}} c0 ∼ c1 {{{(a0, a1). I ∧ post(a0, a1)}}}
� {{{I}}} c1 ∼ c0 {{{(a1, a0). I ∧ post(a0, a1)}}}

swap
� {{{I}}} c0; ; c1 ∼ c1; ; c0 {{{(a0, a1). I ∧ post(a0, a1)}}}

c0 c ′0 : code L A0 c1 : code J A1

� {{{pre}}} c0 ∼ c1 {{{post}}} ∀h. θ(c0 h) = θ(c ′0 h)
eqDistrL

� {{{pre}}} c ′0 ∼ c1 {{{post}}}

c0 : code L A0 c1 : code L A1

� {{{pre}}} c0 ∼ c1 {{{post}}}
symmetry

� {{{pre−1}}} c1 ∼ c0 {{{post−1}}}

c0, c1 : N→ code L unit N : N
∀n. � {{{I n}}} c0 ∼ c1 {{{I (n + 1)}}}

for-loop
� {{{I 0}}} for loopN c0 ∼ for loopN c1 {{{I (N + 1)}}}

c0, c1 : code L bool N : N
� {{{I (true, true)}}} c0 ∼ c1 {{{(b0, b1). b0 = b1 ∧ I (b0, b1)}}}

do-while
� {{{I (true, true)}}} do whileN c0 ∼

do whileN c1 {{{(b0, b1). b0 = b1 = false ∨ I (false, false)}}}

c0 : code L0 A0 c1 : code L1 A1

∀(h0, h1), pres(h0, h1)⇒ prew (h0, h1), � {{{prew}}} c0 ∼ c1 {{{post}}}
pre rule

� {{{pres}}} c0 ∼ c1 {{{post}}}

c0 : code L0 A0 c1 : code L1 A1

� {{{pre}}} c0 ∼ c1 {{{posts}}}
∀(a0, h0)(a1, h1), posts(a0, h0)(a1, h1)⇒ postw (a0, h0)(a1, h1)

post rule
� {{{pre}}} c0 ∼ c1 {{{postw}}}

|A|, |B| < ω f : A→ B bijective
uniform

� {{{pre}}} a<$ U(A) ∼ b <$ U(B) {{{(a, b). f (a) = b ∧ pre}}}
b0, b1 : bool

asrt
� {{{b0 = b1}}} assert b0 ∼ assert b1 {{{b0 = true ∧ b1 = true}}}

b : bool
asrtL

� {{{b = true}}} assert b ∼ return () {{{b = true}}}

...
...

...
5

SSProve/Packages

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if !key == ⊥ then

k <$ uniform {0, 1}n

key := k

(r,c) ← enc(key , msg)

return (r,c)

package a collection of typed

procedure implementations with shared state

interface set of (typed) locations, 2 collections of

(typed) procedure names: imports & exports

seq. comp. P1 ◦ P2 inlining: replace call to imported procedure

x ← f(a) in P1 with x ← P2.f(a)

prerequisites provide all imports. No requirement about state!

par. comp. P1 ‖ P2 union of implementations

prerequisites no clashing procedure names

Laws:
P1 ◦ (P2 ◦ P3) = (P1 ◦ P2) ◦ P3

P1 ‖ P2 = P2 ‖ P1

P1 ‖ (P2 ‖ P3) = (P1 ‖ P2) ‖ P3

(P1 ◦ P3) ‖ (P2 ◦ P4) = (P1 ‖ P2) ◦ (P3 ‖ P4)

6

SSProve/Packages

package: IND-CPA0

mem: key : option KEY

ENC(msg):

if !key == ⊥ then

k <$ uniform {0, 1}n

key := k

(r,c) ← enc(key , msg)

return (r,c)

package a collection of typed

procedure implementations with shared state

interface set of (typed) locations, 2 collections of

(typed) procedure names: imports & exports

seq. comp. P1 ◦ P2 inlining: replace call to imported procedure

x ← f(a) in P1 with x ← P2.f(a)

prerequisites provide all imports. No requirement about state!

par. comp. P1 ‖ P2 union of implementations

prerequisites no clashing procedure names

Laws:
P1 ◦ (P2 ◦ P3) = (P1 ◦ P2) ◦ P3

P1 ‖ P2 = P2 ‖ P1

P1 ‖ (P2 ‖ P3) = (P1 ‖ P2) ‖ P3

(P1 ◦ P3) ‖ (P2 ◦ P4) = (P1 ‖ P2) ◦ (P3 ‖ P4) 6

Games, Adversaries, Indistinguishability

• Game: a package with no imports

• Game pair: two games with the same exports

• Adversary A for game G : package compatible with G with separate state

exporting one procedure

A.run : unit → bool

intuitive meaning: guess which game A is interacting with

• Advantage of A against a game pair (G0,G1):

α(G0,G1) (A) = |Pr[true← (A ◦ G0).run()]− Pr[true← (A ◦ G1).run()]|

• Perfect indistinguishability G0
0
≈ G1 : ∀A . α(G0,G1)(A) = 0

7

Games, Adversaries, Indistinguishability

• Game: a package with no imports

• Game pair: two games with the same exports

• Adversary A for game G : package compatible with G with separate state

exporting one procedure

A.run : unit → bool

intuitive meaning: guess which game A is interacting with

• Advantage of A against a game pair (G0,G1):

α(G0,G1) (A) = |Pr[true← (A ◦ G0).run()]− Pr[true← (A ◦ G1).run()]|

• Perfect indistinguishability G0
0
≈ G1 : ∀A . α(G0,G1)(A) = 0

7

SSP theorems

Theorem (Triangle inequality)

α(F ,H)(A) ≤ α(F ,G)(A) + α(G ,H)(A).

Theorem (Reduction)

α(M◦G0,M◦G1)(A) = α(G0,G1)(A ◦M).

Theorem (Relational equivalence =⇒ perf. indistinguishability)

Two games are perfectly indistinguishable if all their procedures are (i) equivalent in

the pRHL, and (ii) maintain a stable invariant on the game state.

8

SSP theorems

Theorem (Triangle inequality)

α(F ,H)(A) ≤ α(F ,G)(A) + α(G ,H)(A).

Theorem (Reduction)

α(M◦G0,M◦G1)(A) = α(G0,G1)(A ◦M).

Theorem (Relational equivalence =⇒ perf. indistinguishability)

Two games are perfectly indistinguishable if all their procedures are (i) equivalent in

the pRHL, and (ii) maintain a stable invariant on the game state.

8

SSP theorems

Theorem (Triangle inequality)

α(F ,H)(A) ≤ α(F ,G)(A) + α(G ,H)(A).

Theorem (Reduction)

α(M◦G0,M◦G1)(A) = α(G0,G1)(A ◦M).

Theorem (Relational equivalence =⇒ perf. indistinguishability)

Two games are perfectly indistinguishable if all their procedures are (i) equivalent in

the pRHL, and (ii) maintain a stable invariant on the game state.

8

Summary – SSProve:

A foundational built on standard mathematical foundations

framework code, packages, laws, pRHL, semantics, tactics

for modular programs composed from packages

crypto proofs security properties of probabilistic, stateful language

in Coq mature proof assistant with clearly delimited TCB

Docs, code, info github.com/SSProve

9

github.com/SSProve

