SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq

Carmine Abate¹

¹ Philipp G. Haselwarter² Exequiel Rivas³ Antoine Van Muylder⁴ Théo Winterhalter¹ Cătălin Hriţcu¹ Kenji Maillard⁵ Bas Spitters²

34th Computer Security Foundation Symposium, 24.06.2021

This work was in part supported by the European Research Council under ERC Starting Grant SECOMP (715753), by AFOSR grant *Homotopy type theory and probabilistic computation* (12595060), and by the Concordium Blockchain Research Center at Aarhus University. Antoine Van Muylder holds a PhD Fellowship from the Research Foundation – Flanders (FWO).

¹MPI-SP ²Aarhus University ³Inria Paris ⁴Vrije Universiteit Brussel ⁵Inria Rennes

Why SSProve?

Motivation:

- Shoup, Bellare and Rogaway (2004): "Crisis of rigour" in cryptography. Proposal: Game-playing proofs
- Monolithic game-based proofs can become intractable
- *State-Separating Proofs* (SSP) from high-level structure of miTLS paper proofs (Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Motivation:

- Shoup, Bellare and Rogaway (2004): "Crisis of rigour" in cryptography. Proposal: Game-playing proofs
- Monolithic game-based proofs can become intractable
- *State-Separating Proofs* (SSP) from high-level structure of miTLS paper proofs (Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Contributions:

- Give precise meaning to SSP and formalise it in Coq prover
- Modular language, logic & semantics
- Theorem connecting high-level SSP arguments and low-level program logic
- Approach validated by formalising several examples
 This paper: PRF, ElGamal. Github: KEM-DEM, Σ-protocols (with N. Sidorenco).

Motivation:

- Shoup, Bellare and Rogaway (2004): "Crisis of rigour" in cryptography. Proposal: Game-playing proofs
- Monolithic game-based proofs can become intractable
- *State-Separating Proofs* (SSP) from high-level structure of miTLS paper proofs (Brzuska, Delignat-Lavaud, Fournet, Kohbrok, Kohlweiss; 2018)

Contributions:

- Give precise meaning to SSP and formalise it in Coq prover
- Modular language, logic & semantics
- Theorem connecting high-level SSP arguments and low-level program logic
- Approach validated by formalising several examples
 This paper: PRF, ElGamal. Github: KEM-DEM, Σ-protocols (with N. Sidorenco).

Requirements: IND-CPA security for PRF based encryption

 $\overset{\omega}{\approx}$

To prove...

package: I	ND-CPA ⁰
mem: key :	option KEY
ENC(msg): if key = key \langle (r,c) \leftarrow e return (r	⊥ then uniform {0,1} ⁿ nc(key, msg) ,c)

package: IND-CPA¹ mem: key : option KEY ENC(msg): if key = \perp then key <\$ uniform {0,1}ⁿ msg_rnd <\$ uniform {0,1}ⁿ (r,c) \leftarrow enc(key, msg_rnd) return (r,c)

We need to...

Requirements: IND-CPA security for PRF based encryption

To prove...

package: I	ND-CPA ⁰
mem: key :	option KEY
ENC(msg): if key = key <\$ (r,c)	\perp then uniform $\{0,1\}^n$ nc(key, msg)

package: IND-CPA¹ mem: key : option KEY ENC(msg): if key = \perp then key <\$ uniform {0,1}ⁿ msg_rnd <\$ uniform {0,1}ⁿ (r,c) \leftarrow enc(key, msg_rnd) return (r,c)

pick a proof assistant

Ø define a core language (syntax, semantics)

We need to ...

③ prove code-level reasoning principles (pRHL)

 $\stackrel{\varepsilon}{\approx}$

- define packages, package composition
- G define games, adversaries, and security
- **6** prove high-level reasoning principles (SSP)

Provides a formal language for

- mathematical definitions & theorems
- executable algorithms (pure, i.e. no state/probabilities etc)

Example libraries

- computer science: CompCert (C compiler), Verified Software Toolchain (verification of C programs), Fiat-Crypto (fast cryptographic primitives)
- mathematics: 4 colour theorem, Feit-Thompson theorem, real analysis

Architecture

- trusted code base = clearly delimited kernel
- tactic language for programming automation
- easy installation via package manager

SSProve/Core language

package:	IN	D-CPA ⁰	
mem: key	:	option	KEY
ENC(msg)	:		
if !key	==	\perp then	L
k <\$	uni:	form {0	$, 1\}^{n}$
key :	k		
(r,c) ←	ene	c(key,	msg)
return	(r,	c)	

 $!\ell$ read from memory location ℓ $\ell := v$ write v to memory location ℓ x < Dsample from (sub-) distribution D $x \leftarrow p(a)$ call imported procedure p on value a c_1 ; c_2 sequencing (omitted at end of line)return vembed v from Coq's ambient algorith. language

SSProve/Core language

! ℓ	read from memory location ℓ	
ℓ := v	write \mathtt{v} to memory location ℓ	
x <\$ D	sample from (sub-) distribution D	
$x \leftarrow p(a)$	call imported procedure ${\tt p}$ on value ${\tt a}$	
c ₁ ; c ₂	sequencing (omitted at end of line)	
return v	embed $\ensuremath{\mathtt{v}}$ from Coq's ambient algorith. language	

Under the hood, in Coq:

 $\texttt{Inductive code A} = \textit{ret} (\texttt{x}:\texttt{A}) \mid \textit{call} (\texttt{p}:\texttt{op}) (\texttt{x}:\texttt{src p}) \ (\kappa:\texttt{tgt p} \rightarrow \texttt{code A}) \mid \ ...$

SSProve/Core language

packag	ge: IN	ND-CPA ⁰	
mem:	key :	option	KEY
ENC(m if !: k	sg): key == <\$ uni	\perp then form {0,	, 1} ⁿ
(r,c retu	$y \cdot - r$ $y \cdot - r$ rn (r,	nc(key, c)	msg)

! ℓ	read from memory location ℓ	
ℓ := v	write \mathtt{v} to memory location ℓ	
x <\$ D	sample from (sub-) distribution D	
$x \leftarrow p(a)$	call imported procedure ${\tt p}$ on value ${\tt a}$	
c ₁ ; c ₂	sequencing (omitted at end of line)	
return v	embed $\ensuremath{\mathtt{v}}$ from Coq's ambient algorith. language	

Under the hood, in Coq:

 $\texttt{Inductive code A} = \textit{ret} (\texttt{x}:\texttt{A}) \mid \textit{call} (\texttt{p}:\texttt{op}) (\texttt{x}:\texttt{src p}) \ (\kappa:\texttt{tgt p} \rightarrow \texttt{code A}) \mid \ ...$

Derived	assert(b):	for(n, c):	
definitions:	if b == false then	if $n > 0$ then	
	BOOM <\$ null distr {0,1}	c n	
	return BOOM	for(n-1, c)	

Rules of pRHL

Each rule is a theorem in Coq.

Details on semantics: Antoine Van Muylder's video presentation on SSProve at **TYPES 2021**.

	$f_0: A_0 \rightarrow$ code $L_0 \ B_0$ $f_1: A_1 \rightarrow$ code $L_1 \ B_1$	c_0 : code $L A_0 = c_1$: code $L A_1$
	$\vDash \{ \rho re \} \ c_0 \sim c_1 \ \{ \mu \}$	$\models \{I\} \ c_0 \sim c_1 \ \{(a_0, a_1). \ I \land post(a_0, a_1)\}$
c: code L A	$\forall a_0 a_1$. $\models \{(h_0, h_1). \ \mu(a_0, h_0)(a_1, h_1)\} \ (f_0 \ a_0) \sim (f_1 \ a_1) \ \{post\}$	$\models \{I\} c_1 \sim c_0 \{(a_1, a_0). \ I \land post(a_0, a_1)\}$
$\models \{m_0 = m_1\} \ c \sim c \ \{(r_0, r_1). \ m_0 = m_1 \land r_0 = r_1\}$	$\models \{pre\} a_0 \leftarrow c_0; ; f_0 a_0 \sim a_1 \leftarrow c_1; ; f_1 a_1 \{post\}$	$\models \{I\} c_0;; c_1 \sim c_1;; c_0 \{(a_0, a_1), I \land post(a_0, a_1)\}$
$\begin{array}{c} c_0 \ c_0': \texttt{code } L \ A_0 c_1: \texttt{code } J \ A_1 \\ \vdash \{\texttt{pre}\} \ c_0 - c_1 \ \{\texttt{post}\} \forall h. \ \theta(c_0, h) = \theta(c_0', h) \\ \vdash \{\texttt{pre}\} \ c_0' \sim c_1 \ \{\texttt{post}\} \texttt{eqDistrf.} \end{array}$	$\begin{array}{l} c_0: \operatorname{code} L \land c_0 c_1: \operatorname{code} L \land t_1 \\ \hline & \vdash \{ pre\} \ c_0 \sim c_1 \ \{ post \} \\ & \vdash \{ pre^{-1} \} \ c_1 \sim c_0 \ \{ post^{-1} \} \ symmetry \end{array}$	$\begin{array}{c} c_0, c_1: \mathbb{N} \rightarrow \text{code } L \text{ unit } N: \mathbb{N} \\ \forall n := \left\{ I \; n \right\} \; c_0 \sim c_1 \left\{ I \; (n+1) \right\} \\ \hline := \left\{ I \; 0 \right\} \; \text{for-loop} \; N \; c_0 \sim \text{for-loop} \; N \; c_1 \left\{ I \; (N+1) \right\} \; \text{for-loop} \end{array}$
c. c. : code / bool _ N : N		

$\models \{ I(\texttt{true},\texttt{true}) \} \ c_0 \sim c_1 \ \{ (b_0, b_1). \ b_0 = b_1 \land I(b_0, b_1) \}$	c_0 : code L_0 A_0 c_1 : code L_1 A_1
\models {/(true, true)} do_while N $c_0 \sim$	$\forall (h_0, h_1), \ pre_s(h_0, h_1) \Rightarrow pre_w(h_0, h_1), \models \{pre_w\} \ c_0 \sim c_1 \ \{post\}$
do_while N c_1 { (b_0, b_1) . $b_0 = b_1 = false \lor I(false, false)$ }	$\models \{pre_s\} c_0 \sim c_1 \{post\}$

 $\begin{array}{c} c_0: \operatorname{code}\ L_0\ A_0\quad c_1: \operatorname{code}\ L_1\ A_1\\ & \vdash \left\{ pre\right\}\ c_0 \sim c_1\ \left(post_6\right)\\ \forall (a_0,h_0)(a_1,h_1),\ post_6(a_0,h_0)(a_1,h_1) \rightarrow post_w(a_0,h_0)(a_1,h_1)\\ & \vdash \left\{ pre\right\}\ c_0 \sim c_1\ \left(post_w \right) \end{array} \begin{array}{c} \text{post_stude} \end{array}$

 $\frac{b_0, b_1 : \text{bool}}{\models \{b_0 = b_1\} \text{ assert } b_0 \sim \text{ assert } b_1 \{b_0 = \text{true} \land b_1 = \text{true}\}}$

$$b: bool$$

= {b = true} assert $b \sim return$ () {b = true}

5

asrt

```
package: IND-CPA<sup>0</sup>
mem: key : option KEY
ENC(msg):
if !key == ⊥ then
    k <$ uniform {0,1}"
    key := k
 (r,c) ← enc(key, msg)
return (r,c)</pre>
```

package a collection of typed procedure implementations with shared state interface set of (typed) locations, 2 collections of (typed) procedure names: imports & exports seq. comp. $P_1 \circ P_2$ inlining: replace call to imported procedure $x \leftarrow f(a)$ in P_1 with $x \leftarrow P_2.f(a)$ prerequisites provide all imports. No requirement about state! union of implementations par. comp. $P_1 \parallel P_2$ prerequisites no clashing procedure names

package:	INI	D-CPA ⁰
mem: key	:	option KEY
ENC(msg): if !key k <\$ u key := (r,c) ← return (== nif k enc r,c	\perp then form $\{0,1\}^n$:(key, msg)

Laws:

package a collection of typed procedure implementations with shared state interface set of (typed) locations, 2 collections of (typed) procedure names: imports & exports seq. comp. $P_1 \circ P_2$ inlining: replace call to imported procedure $x \leftarrow f(a)$ in P_1 with $x \leftarrow P_2.f(a)$ prerequisites provide all imports. No requirement about state! par. comp. $P_1 \parallel P_2$ union of implementations prerequisites no clashing procedure names

$$P_{1} \circ (P_{2} \circ P_{3}) = (P_{1} \circ P_{2}) \circ P_{3}$$

$$P_{1} \parallel P_{2} = P_{2} \parallel P_{1}$$

$$P_{1} \parallel (P_{2} \parallel P_{3}) = (P_{1} \parallel P_{2}) \parallel P_{3}$$

$$(P_{1} \circ P_{3}) \parallel (P_{2} \circ P_{4}) = (P_{1} \parallel P_{2}) \circ (P_{3} \parallel P_{4})$$

Games, Adversaries, Indistinguishability

- Game: a package with no imports
- Game pair: two games with the same exports
- Adversary *A* for game *G*: package compatible with *G* with separate state exporting one procedure

 $\mathcal{A}.\mathtt{run}:\mathtt{unit} o\mathtt{bool}$

intuitive meaning: guess which game $\ensuremath{\mathcal{A}}$ is interacting with

Games, Adversaries, Indistinguishability

- Game: a package with no imports
- Game pair: two games with the same exports
- Adversary *A* for game *G*: package compatible with *G* with separate state exporting one procedure

 $\mathcal{A}.\mathtt{run}:\mathtt{unit} o\mathtt{bool}$

intuitive meaning: guess which game $\ensuremath{\mathcal{A}}$ is interacting with

• Advantage of A against a game pair (G_0, G_1):

 $\alpha_{(\textit{G}_{0},\textit{G}_{1})}\left(\mathcal{A}\right) = \left|\Pr[\textsf{true} \leftarrow (\mathcal{A} \circ \textit{G}_{0}).\textit{run}()] - \Pr[\textsf{true} \leftarrow (\mathcal{A} \circ \textit{G}_{1}).\textit{run}()]\right|$

• Perfect indistinguishability $G_0 \stackrel{0}{\approx} G_1 : \forall \mathcal{A} \cdot \alpha_{(G_0,G_1)}(\mathcal{A}) = 0$

Theorem (Triangle inequality) $\alpha_{(F,H)}(\mathcal{A}) \leq \alpha_{(F,G)}(\mathcal{A}) + \alpha_{(G,H)}(\mathcal{A}).$

SSP theorems

Theorem (Triangle inequality) $\alpha_{(F,H)}(\mathcal{A}) \leq \alpha_{(F,G)}(\mathcal{A}) + \alpha_{(G,H)}(\mathcal{A}).$

Theorem (Reduction)

 $\alpha_{(M \circ G^0, M \circ G^1)}(\mathcal{A}) = \alpha_{(G^0, G^1)}(\mathcal{A} \circ M).$

Theorem (Triangle inequality) $\alpha_{(F,H)}(\mathcal{A}) \leq \alpha_{(F,G)}(\mathcal{A}) + \alpha_{(G,H)}(\mathcal{A}).$

Theorem (Reduction)

 $\alpha_{(M \circ G^0, M \circ G^1)}(\mathcal{A}) = \alpha_{(G^0, G^1)}(\mathcal{A} \circ M).$

Theorem (Relational equivalence \implies perf. indistinguishability)

Two games are perfectly indistinguishable if all their procedures are (i) equivalent in the pRHL, and (ii) maintain a stable invariant on the game state.

Summary – SSProve:

A foundational	built on standard mathematical foundations	
framework	code, packages, laws, pRHL, semantics, tactics	
for modular	programs composed from packages	
crypto proofs	security properties of probabilistic, stateful language	
in Coq	mature proof assistant with clearly delimited TCB	

Docs, code, info github.com/SSProve