
Statistical Model Checking for
Hyperproperties

Yu Wang*, Siddhartha Nalluri*, Borzoo Bonakdarpour**, Miroslav Pajic*

*Department of Electrical and Computer Engineering

Duke University

**Department of Computer Science

Michigan State University

Probabilistic Systems

Many computer systems have probabilistic executions.

Randomized
Network Protocol

Randomized
Hardware Control

Cyber-Physical
Systems

Probabilistic
Program

Information Security in Probabilistic Systems

PRIVATE and PUBLIC variables may have (implicit) information flow.

Example (Probabilistic Interference): Consider a parallel program 𝑷 of two threads
𝐭𝐡𝟏: while ℎ > 0 do {ℎ ← ℎ − 1; 𝑙 ← 1} | 𝐭𝐡𝟐: 𝑙 ← 2

where ℎ ∈ {1, 2} is private; and 𝑙 ∈ {1, 2} is public.

At each time, the CPU randomly chooses to run one step of a thread.
• If ℎ = 1, 𝐭𝐡𝟏 has 1 steps, and 𝐭𝐡𝟐 has 1 step. When 𝑷 stops, 𝑙 = 1 w.p. 1/2.
• If ℎ = 2, 𝐭𝐡𝟏 has 2 steps, and 𝐭𝐡𝟐 has 1 step. When 𝑷 stops, 𝑙 = 1 w.p. 1/3.

Formal Verification for Information Flow Security Specifications

Goal: Automated reasoning of general information security properties.

Verifier

Yes

Information Flow
Security Property

Computer System
Model

No

Main Questions:
1. How to formally express information flow security properties?
2. How to develop mathematically-rigorous verification algorithms?

How to formally express properties?

Time-related properties of a single execution is formally expressible by temporal logic.

The logic PCTL*:
𝜑 ⩴ 𝖺 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝑿𝜑 𝜑𝑼𝑻𝜑 ℙ∼𝒑𝜑

• 𝖺 is an atomic proposition;

• ¬ means “not”; ∧ means “and”;

• 𝑿𝜙 means 𝜙 holds NEXT;

• 𝜙𝟏𝐔𝑇𝜙2 means 𝜙1 holds UNTIL 𝜙2 becomes true
within time 𝑇;

• ∼∈ {>,<,≥,≤}, ℙ>𝒑 𝜑 means 𝜙 holds with

PROBABILITY > 𝑝

Examples

• Value of ℎ is ALWAYS above 2
with PROBABILITY below 0.1:

ℙ<0.1 T𝑼(ℎ > 2)

PCTL* Cannot Express Information Flow Security

Probabilistic NON-Interference:

ℙ𝜋1 ℎ = 0 𝜋1 finally leads to 𝑙 = 0 𝜋1 ≈ ℙ𝜋2 ℎ = 1 𝜋2 finally leads to 𝑙 = 0 𝜋2

PCTL* cannot express hyperproperties, since the logical connectives are invariably taken for
a single executions.

Probabilistic Noninterference is a hyperproperty about the relation between multiple
system executions.

The Logic HyperPCTL*

HyperPCTL*:
𝜑 ⩴ 𝖺𝜋 | 𝜑𝜋 |¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 𝑼𝑻 𝜑 | 𝑝 ∼ 𝑝

𝑝 ⩴ ℙ𝛱𝜑 | ℙ𝛱𝑝 | 𝑓(𝑝,… , 𝑝)

• 𝖺 replaced by 𝖺𝜋, 𝜋 is a path variable,

• ℙ replaced by ℙ𝛱, 𝛱 is a set of path variables,

• ℙ∼𝒑 𝜑 replaced by a set of rules 𝑝 ⩴ ℙ𝛱𝜑 | ℙ𝛱𝑝 | 𝑓(𝑝,… , 𝑝) and 𝑝 ∼ 𝑝

Theorem 1: HyperPCTL* is well-defined.

Features of HyperPCTL*

Theorem 2: HyperPCTL* is strictly more expressive than PCTL*.

Probabilistic Noninterference:

ℙ𝜋1 𝑙 = 0 𝜋1 → 𝐅 ℎ = 0 𝜋1 ≈ ℙ𝜋2 𝑙 = 1 𝜋2 → 𝐅 ℎ = 0 𝜋2

How to Check HyperPCTL*?

Statistical Model Checking (SMC): Statistically infer the correctness of HyperPCTL*
specificaitons by sample system executions.

For any pre-given 𝛼 > 0, the result is correct with probability at least 1 − 𝛼.

Advantages:
• Tolerate Unknowns
• Scalability
• Probabilistic Guarantee

HyperSMC

Yes

HyperPCTL*
Specification

Sample Executions

No
Significance level
(error probability)

𝛼 > 0

Statistical Model Checking for HyperPCTL*

Three kinds of basic sub-specifications:

• Probabilistic quantifications of multiple parallel paths ℙ(𝜋1,𝜋2)𝜑(𝜋1,𝜋2) < 𝑝

• Nested probabilistic path quantification ℙ𝜋1 ℙ𝜋2𝜑 𝜋1,𝜋2 < 𝑝2 < 𝑝1

• Joint probabilities (ℙ𝛱1𝜑1, ℙ
𝛱2𝜑2) ∈ 𝐷

We proposed NEW statistical inference methods to handle each of them!

HyperSMC is based on

1) Divide a specification into basic sub-specifications;

2) Check each of them with sufficient statistical accuracy.

Case Studies 1

Dining 𝑁 Cryptographers
• Markov model of at least 2𝑁 states
• We verified information security

Agents 𝛿 Acc. No. Samples Time (s)
100 0.05 1.00 1.0e+03 0.91
100 0.1 1.00 5.2e+02 0.39
100 0.2 1.00 2.8e+02 0.14

1000 0.05 0.98 1.1e+03 3.27
1000 0.1 1.00 5.5e+02 1.52
1000 0.2 1.00 2.8e+02 0.69

[Significance level 0.01]

Case Studies 2

Parallel Program with 𝑁 threads
• Markov model of 𝑁! states.
• We verified probabilistic interference.

Threads Significance Acc. No. Samples Time (s)
20 0.01 1.00 7.7e+02 0.49

20 0.001 1.00 7.6e+03 6.45

50 0.01 1.00 7.0e+02 0.48

50 0.001 1.00 6.8e+03 6.39

100 0.01 1.00 6.5e+02 0.54

100 0.001 1.00 6.6e+03 7.10

ℙ𝜋1 𝑙 = 0 𝜋1 → 𝐅 ℎ = 0 𝜋1

≈ ℙ𝜋2 𝑙 = 1 𝜋2 → 𝐅 ℎ = 0 𝜋2

Case Studies 3

GabFeed
• Chat server with encryption.
• We verified a time side-channel.

Horizon 𝒌 𝜀 Significance Acc. No. Samples Time (s)
60 0.05 0.01 1.00 5.5e+02 0.54
60 0.05 0.001 1.00 5.5e+03 5.76
60 0.1 0.01 1.00 6.1e+02 0.60
60 0.1 0.001 1.00 6.2e+03 7.16
90 0.05 0.01 1.00 3.7e+02 0.46
90 0.05 0.001 1.00 3.7e+03 4.94
90 0.1 0.01 1.00 4.1e+02 0.48
90 0.1 0.001 1.00 4.1e+03 5.37

120 0.05 0.01 1.00 3.8e+02 6.96
120 0.05 0.001 1.00 2.2e+03 11.24
120 0.1 0.01 1.00 3.8e+02 6.05
120 0.1 0.001 1.00 2.3e+03 9.46

Case Studies 4

Randomized Cache Replacement Policy
• Least recently used (LRU) is not secure.
• We verified security.

Horizon 𝑻 𝜀 Significance Acc. No. Samples Time (s)
10 0.05 0.01 1.00 1.1e+02 0.13
10 0.05 0.001 1.00 1.0e+03 2.56
10 0.01 0.01 1.00 1.2e+02 0.14
10 0.01 0.001 1.00 1.2e+03 2.79
20 0.05 0.01 1.00 6.0e+02 1.49
20 0.05 0.001 1.00 6.2e+03 16.73
20 0.01 0.01 0.99 1.2e+03 2.97
20 0.01 0.001 1.00 1.1e+04 28.99

Thank you

Code: https://gitlab.oit.duke.edu/cpsl/hpctls

https://gitlab.oit.duke.edu/cpsl/conformance

