Statistical Model Checking for Hyperproperties

Yu Wang*, Siddhartha Nalluri*, Borzoo Bonakdarpour**, Miroslav Pajic*

*Department of Electrical and Computer Engineering Duke University

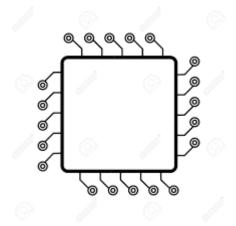
**Department of Computer Science Michigan State University

PRATT SCHOOL of

ENGINEERING

Many computer systems have probabilistic executions.

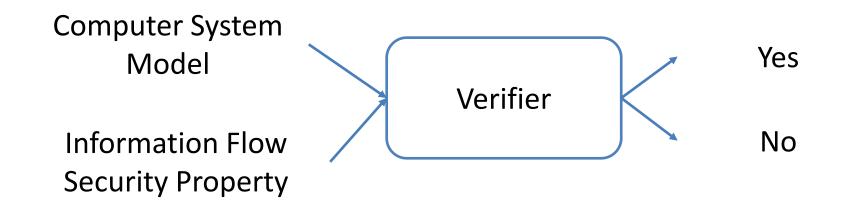
Probabilistic Program


Randomized Network Protocol

Randomized Hardware Control

Cyber-Physical Systems

PRIVATE and PUBLIC variables may have (implicit) information flow.


Example (Probabilistic Interference): Consider a parallel program P of two threads $\mathbf{th_1}$: while h > 0 do $\{h \leftarrow h - 1; l \leftarrow 1\} | \mathbf{th_2}: l \leftarrow 2$ where $h \in \{1, 2\}$ is private; and $l \in \{1, 2\}$ is public.

At each time, the CPU randomly chooses to run one step of a thread.

- If h = 1, th₁ has 1 steps, and th₂ has 1 step. When **P** stops, l = 1 w.p. 1/2.
- If h = 2, th₁ has 2 steps, and th₂ has 1 step. When **P** stops, l = 1 w.p. 1/3.

Goal: Automated reasoning of general information security properties.

Main Questions:

- 1. How to formally express information flow security properties?
- 2. How to develop mathematically-rigorous verification algorithms?

Time-related properties of a single execution is formally expressible by temporal logic.

The logic **PCTL***:

$$arphi \coloneqq \mathsf{a} \mid \neg arphi \mid arphi \wedge arphi \mid X arphi \mid arphi oldsymbol{U}_T arphi \mid \mathbb{P}_{\sim oldsymbol{p}} arphi$$

- a is an atomic proposition;
- ¬ means "not"; ∧ means "and";
- $X\phi$ means ϕ holds NEXT;
- $\phi_1 \mathbf{U}_T \phi_2$ means ϕ_1 holds UNTIL ϕ_2 becomes true within time *T*;
- $\sim \in \{>, <, \ge, \le\}, \mathbb{P}_{>p} \varphi$ means ϕ holds with **PROBABILITY** > p

Examples

• Value of h is ALWAYS above 2 with PROBABILITY below 0.1: $\mathbb{P}_{<0.1}(TU(h > 2))$

Probabilistic NON-Interference:

 $\mathbb{P}^{\pi_1}((h=0)^{\pi_1} \text{ finally leads to } (l=0)^{\pi_1}) \approx \mathbb{P}^{\pi_2}((h=1)^{\pi_2} \text{ finally leads to } (l=0)^{\pi_2})$

Probabilistic Noninterference is a hyperproperty about the relation between multiple system executions.

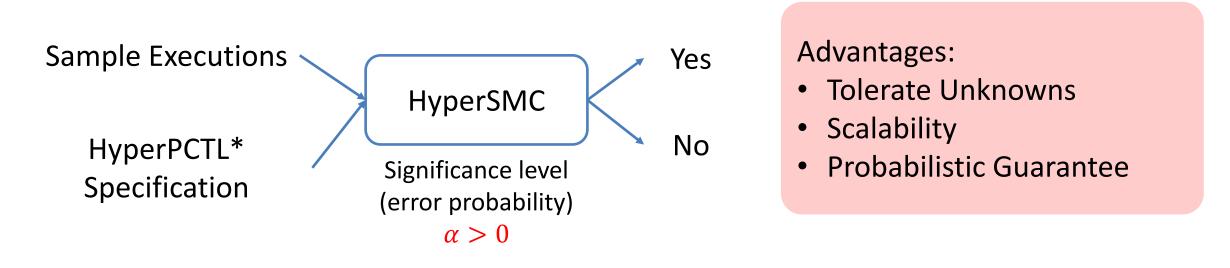
PCTL* cannot express hyperproperties, since the logical connectives are invariably taken for a single executions.

HyperPCTL*:

$$\varphi \coloneqq \mathbf{a}^{\pi} | \varphi^{\pi} | \neg \varphi | \varphi \land \varphi | \varphi \mathbf{U}_{T} \varphi | p \sim p$$
$$p \coloneqq \mathbb{P}^{\Pi} \varphi | \mathbb{P}^{\Pi} p | f(p, \dots, p)$$

- a replaced by a^{π} , π is a path variable,
- \mathbb{P} replaced by \mathbb{P}^{Π} , Π is a set of path variables,
- $\mathbb{P}_{\sim p} \varphi$ replaced by a set of rules $p \coloneqq \mathbb{P}^{\Pi} \varphi \mid \mathbb{P}^{\Pi} p \mid f(p, ..., p)$ and $p \sim p$

Probabilistic Noninterference:


$$\mathbb{P}^{\pi_1} \big((l=0)^{\pi_1} \to \mathbf{F}(h=0)^{\pi_1} \big) \approx \mathbb{P}^{\pi_2} \big((l=1)^{\pi_2} \to \mathbf{F}(h=0)^{\pi_2} \big)$$

Theorem 1: HyperPCTL* is well-defined.

Theorem 2: HyperPCTL* is strictly more expressive than **PCTL***.

Statistical Model Checking (SMC): Statistically infer the correctness of HyperPCTL* specificaitons by sample system executions.

For any pre-given $\alpha > 0$, the result is correct with probability at least $1 - \alpha$.

HyperSMC is based on

- 1) Divide a specification into basic sub-specifications;
- 2) Check each of them with sufficient statistical accuracy.

Three kinds of basic sub-specifications:

- Probabilistic quantifications of **multiple** parallel paths $\mathbb{P}^{(\pi_1,\pi_2)}\varphi^{(\pi_1,\pi_2)} < p$
- Nested probabilistic path quantification $\mathbb{P}^{\pi_1}(\mathbb{P}^{\pi_2}\varphi^{(\pi_1,\pi_2)} < p_2) < p_1$
- Joint probabilities $(\mathbb{P}^{\Pi_1}\varphi_1, \mathbb{P}^{\Pi_2}\varphi_2) \in D$

We proposed NEW statistical inference methods to handle each of them!

Dining N Cryptographers

- Markov model of at least 2^N states
- We verified information security

$$\begin{split} \mathbb{P}^{\pi_1} \left(\diamondsuit(\neg \mathsf{S}_{ij}^{\pi_1} \land \diamondsuit \mathsf{P}^{\pi_1}) \right) \approx_{\varepsilon} \mathbb{P}^{\pi_2} \left(\diamondsuit(\mathsf{S}_{ij}^{\pi_2} \land \diamondsuit \mathsf{P}^{\pi_2}) \right) \\ \approx_{\varepsilon} \mathbb{P}^{\pi_3} \left(\diamondsuit(\neg \mathsf{S}_{ij}^{\pi_3} \land \diamondsuit \mathsf{P}^{\pi_3}) \right) \approx_{\varepsilon} \mathbb{P}^{\pi_4} \left(\diamondsuit(\mathsf{S}_{ij}^{\pi_4} \land \diamondsuit \mathsf{P}^{\pi_4}) \right) \end{split}$$

Agents	δ	Acc.	No. Samples	Time (s)
100	0.05	1.00	1.0e+03	0.91
100	0.1	1.00	5.2e+02	0.39
100	0.2	1.00	2.8e+02	0.14
1000	0.05	0.98	1.1e+03	3.27
1000	0.1	1.00	5.5e+02	1.52
1000	0.2	1.00	2.8e+02	0.69

[Significance level 0.01]

Parallel Program with *N* threads

- Markov model of *N*! states.
- We verified probabilistic interference.

$$\mathbb{P}^{\pi_1} \big((l=0)^{\pi_1} \to \mathbf{F}(h=0)^{\pi_1} \big) \\\approx \mathbb{P}^{\pi_2} \big((l=1)^{\pi_2} \to \mathbf{F}(h=0)^{\pi_2} \big)$$

Threads	Significance	Acc.	No. Samples	Time (s)
20	0.01	1.00	7.7e+02	0.49
20	0.001	1.00	7.6e+03	6.45
50	0.01	1.00	7.0e+02	0.48
50	0.001	1.00	6.8e+03	6.39
100	0.01	1.00	6.5e+02	0.54
100	0.001	1.00	6.6e+03	7.10

GabFeed

- Chat server with encryption.
- We verified a time side-channel.

$$\begin{split} \mathbb{P}^{\pi_1} \left((\bigcirc \mathsf{S}_1^{\pi_1}) \Rightarrow (\diamondsuit^{\leq k} \mathsf{F}^{\pi_1}) \right) \\ \approx_{\varepsilon} \mathbb{P}^{\pi_2} \big((\bigcirc \mathsf{S}_2^{\pi_2}) \Rightarrow (\diamondsuit^{\leq k} \mathsf{F}^{\pi_2}) \big) \end{split}$$

Horizon <i>k</i>	8	Significance	Acc.	No. Samples	Time (s)
60	0.05	0.01	1.00	5.5e+02	0.54
60	0.05	0.001	1.00	5.5e+03	5.76
60	0.1	0.01	1.00	6.1e+02	0.60
60	0.1	0.001	1.00	6.2e+03	7.16
90	0.05	0.01	1.00	3.7e+02	0.46
90	0.05	0.001	1.00	3.7e+03	4.94
90	0.1	0.01	1.00	4.1e+02	0.48
90	0.1	0.001	1.00	4.1e+03	5.37
120	0.05	0.01	1.00	3.8e+02	6.96
120	0.05	0.001	1.00	2.2e+03	11.24
120	0.1	0.01	1.00	3.8e+02	6.05
120	0.1	0.001	1.00	2.3e+03	9.46

Randomized Cache Replacement Policy

- Least recently used (LRU) is not secure.
- We verified security.

$$\begin{split} \mathbb{P}^{\pi_1}(\bigcirc^{(N)} \Box^{\leq T} \mathbf{H}^{\pi_1}) > \mathbb{P}^{\pi_2}(\bigcirc^{(N)} \varphi^{\pi_2}) + \varepsilon \\ \varphi^{\pi_2} &= \left(\mathbf{M}^{\pi_2} \wedge \bigcirc \mathbf{H}^{\pi_2} \wedge \dots \wedge \bigcirc^{(T-1)} \mathbf{H}^{\pi_2} \right) \\ &\vee \dots \vee \left(\mathbf{H}^{\pi_2} \wedge \dots \wedge \bigcirc^{(T-2)} \mathbf{H}^{\pi_2} \wedge \bigcirc^{(T-1)} \mathbf{M}^{\pi_2} \right) \end{split}$$

Horizon T	З	Significance	Acc.	No. Samples	Time (s)
10	0.05	0.01	1.00	1.1e+02	0.13
10	0.05	0.001	1.00	1.0e+03	2.56
10	0.01	0.01	1.00	1.2e+02	0.14
10	0.01	0.001	1.00	1.2e+03	2.79
20	0.05	0.01	1.00	6.0e+02	1.49
20	0.05	0.001	1.00	6.2e+03	16.73
20	0.01	0.01	0.99	1.2e+03	2.97
20	0.01	0.001	1.00	1.1e+04	28.99

Thank you

Code: <u>https://gitlab.oit.duke.edu/cpsl/hpctls</u>