On Compositional Information Flow Aware Refinement

Christoph Baumann
Mads Dam
Roberto Guanciale
Hamed Nemati

CSF 2021
Modular verification based on refinement

But relationship between Info flow security and refinement is troubled.

J. McLean: A general theory of composition for a class of "possibilistic" properties
Modular verification based on refinement

But relationship between Info flow security and refinement is troubled.

J. McLean: A general theory of composition for a class of "possibilistic" properties
Well-formed refinement ↓

↓ is a simulation that

- can reduce non-determinism
- can add new variable that introduce discriminating power (e.g. cache state, time)
Semantic justification in terms of the knowledge an observer gains

Given a run \square, ignorance $\square = \text{all runs that are observational equivalent (\sim)}$

A. Askarov and S. Chong: Learning is change in knowledge: Knowledge-based security for dynamic policies
Ignorance - Knowledge

- Semantic justification in terms of the knowledge an observer gains
- Given a run \[\square \], ignorance \[\square \] = all runs that are observational equivalent (~)

A. Askarov and S. Chong: Learning is change in knowledge: Knowledge-based security for dynamic policies
Ignorance Preserving Refinement (IPR)

\[a \downarrow c \Rightarrow \Diamond a = \Diamond c \uparrow \]

C. Morgan, “The Shadow Knows: Refinement and security in sequential programs”
Ignorance Preserving Refinement (IPR)

\[a \downarrow c \text{ implies that } \llbracket a \rrbracket^a = \llbracket c \rrbracket^c \uparrow \]

C. Morgan, “The Shadow Knows: Refinement and security in sequential programs”
Ignorance Preserving Refinement (IPR)

\[\mathcal{a} \downarrow \mathcal{c} \] implies that \(\mathcal{a}^{\downarrow} = \mathcal{c}^{\uparrow} \)

covers the intentional leakage of abstract secret information (e.g. pwd check) and data refinement
Ignorance Preserving Refinement (IPR)

\[a \downarrow^c \text{ implies that } a^a = c^\uparrow \]

covers the intentional leakage of \textit{abstract} secret information (e.g. pwd check) and data refinement
Compositionality
Compositionality
Relational Refinement

${P} \downarrow {Q}$ is a relational refinement iff
Relational Refinement

\[\{P\} \downarrow \{Q\} \text{ is a relational refinement iff} \]

\begin{figure}
\centering
\begin{tikzpicture}
 \node (a1) at (0,0) {a1};
 \node (a2) at (0,-2) {a2};
 \node (c1) at (0,-4) {c1};
 \node (P) at (0,-6) {P};

 \draw[->] (a1) -- (a2);
 \draw[->] (a2) -- (c1);
 \draw[->] (c1) -- (P);
\end{tikzpicture}
\end{figure}
Relational Refinement

\(\{P\} \downarrow \{Q\} \) is a relational refinement iff
Relational Refinement

\[\{P\} \downarrow \{Q\} \text{ is a relational refinement iff} \]
Relational Refinement

\{P\} \Downarrow \{Q\} is a relational refinement iff
Relational Refinement

\[
\{P\} \Downarrow \{Q\} \text{ is a relational refinement iff}
\]
Relational Refinement

If \(\{P\} \downarrow \{Q\} \) is a relational refinement the it is an IPR

If \(\{P\} \downarrow_1 \{Q\} \) and \(\{Q\} \downarrow_2 \{R\} \) are relational refinements then

\(\{P\} \downarrow_1 : \downarrow_2 \{R\} \) is a relational refinement
In the paper

- Two example applications:
 - SMC addition
 - Oblivious RAM
- Vertical composition
- Related work