Heuristic Approach for Countermeasure Selection Using Attack Graphs

Orly Stan¹, **Ron Bitton¹**, Michal Ezrets¹, Moran Dadon¹ Masaki Inokuchi², Yoshinobu Otha², Tomohiko Yagyu², Yuval Elovici¹, and Asaf Shabtai¹

Cybersecurity Research Center at Ben-Gurion University of the Negev
Security Research Laboratories NEC Corporation

Cybersecurity risk management lifecycle

Identification

identifying system assets.identifying threats to those assetsidentifying security vulnerabilities

Cybersecurity risk management lifecycle

Cybersecurity risk management lifecycle

/ber@ en-Gurion University the Negev

Why countermeasure planning is a very challenging task?

Security vulnerabilities reported in the past two decades

year of publication

Source: <u>https://nvd.nist.gov/general/visualizations/vulnerability-</u> visualizations/cvss-severity-distribution-over-time#CVSSSeverityOverTime

Why countermeasure planning is a very challenging task?

Cyber@ NEC Ben-Gurion University of the Negev

Cyber@ NEC Ben-Gurion University of the Negev

Cyber@ NEC Ben-Gurion University of the Negev

Cyber@ NEC Ben-Gurion University of the Negev

Attack Path II

Attack Graph-Based Risk Calculation

1. Assign basic probabilities to primitive predicates (CVSS based) 23 Primitive facts (leaves) Specify the existing conditions in the system $P(n_{vuln}) = \begin{cases} 0.35, & \text{if } AC = HIgh \\ 0.61, & \text{if } AC = Medium \\ 0.71, & \text{if } AC = Low \end{cases}$ 0.71 0.35 $P(n_{\overline{mln}}) = 1$ NEC Cyber@ Ben-Gurion University NEC

Attack Graph-Based Risk Calculation

2. Recursively compute the probability for succeeding nodes.

Attack Graph-Based Risk Calculation

2. Recursively compute for derivation (AND) and derived (OR)

Step 2: Countermeasure Identification

Countermeasure	Туре
<i>C</i> ₁	Host-Based Firewall
<i>C</i> ₂ , <i>C</i> ₃	Patch
<i>C</i> ₄	EDR

Step 2: Countermeasure Identification

Step 3: Likelihood Equations Generation

Integrate countermeasures into the likelihood equations

Step 3: Likelihood Equations Generation

the countermeasure plan *n* that is within the budget

plan *n*

added to plan *n* to satisfy the budget constraint.

<u>A* Solver</u>

2:	$RiskEq \leftarrow Risk$ equations	
3:	$initial \leftarrow Relevant \ countermeasures$	
4:	$B \leftarrow \text{Budget}$	
5:	Initialize:	
6:	$OpenList \leftarrow PriorityQueue()$	
7:	$ClosedList \leftarrow []$	
8:	procedure A^* -SOLVER($RiskEq$, initial, B)	
9:	addToOpenList(initial, RiskEq)	
10:	while !OpenList.isEmpty() do	
11:	$plan \leftarrow OpenList.poll()$	
12:	if $Cost(plan) \le B$ then	
13:	return <i>plan</i>	
14:	end if	
15:	ClosedList.append(plan)	
16:	for each $cm \in plan$ do	
17:	$newPlan \leftarrow plan \setminus \{cm\}$	
18:	$if !(newPlan \in OpenList)\&\&!(newPlan \in$	
	ClosedList) then	
19:	addToOpenList(newPlan, RiskEq)	
20:	end if	
21:	end for	
22:	end while	
23:	end procedure	
24:	procedure ADDTOOPENLIST(plan,RiskEq)	
25:	$plan.g \leftarrow ComputeRisk(plan, RiskEq)$	
26:	$plan.h \leftarrow h(plan, RiskEq)$	
27:	$plan.f \leftarrow plan.g + plan.h$	
28:	OpenList.add(plan)	
29:	ena procedure	

Algorithm 2 A* Solver

1: Inputs:

y NEC

Evaluation Environment

1. Access sensitive information on DB1

Cyber@ Ben-Gurion University NEC

- 1. Access sensitive information on DB1
- 2. Spoof Host12-Host22 communication

- 1. Access sensitive data on DB1
- 2. Spoof Host12-Host22 communication
- 3. Access sensitive data on Email Server

ty NEC

- 1. Access sensitive data on DB1
- 2. Spoof Host12-Host22 communication
- 3. Access sensitive data on Email Server
- 4. Run code on Web Server 1

Cyber@ Ben-Gurion University of the Negev

- 1. Access sensitive data on DB1
- 2. Spoof Host12-Host22 communication
- 3. Access sensitive data on Email Server
- 4. Run code on Web Server 1
- 5. Denial of service to Web Server 2

Evaluation Environment

• Possible countermeasures:

Product	Туре	Cost (\$) Deploy / Update
Cisco Next-Gen Firewall	Network-based firewall	1000 / 10
ZoneAlarm	Host-based firewall	300 / 10
Snort	Network-based IPS	1000 / 10
Wazuh	Host-based IPS	300 / 10
McAfee EDR	EDR	50 /
Kaspersky EDR		
Various	Patch	-/10

NEC

Evaluation Results

Cost (\$)	Internal Plan	External Plan	
10	Patch ^{WebServer1}	Patch ^{WebServer1}	
20	Patch ^{WebServer1} , Patch^{DB1}	Patch ^{WebServer1} , Patch^{WebServer2}	
30	Patch ^{WebServer1} , Patch ^{DB1} , Patch ^{WebServer2}	Patch ^{WebServer1} , Patch ^{WebServer2} , Patch ^{DB1}	

Evaluation Results

Cyber@ Ben-Gurion University of the Negev

Evaluation Results

Regenerating the AG to assess the risk in the system (green/orange) is significantly higher than using risk equations (red/blue)

Conclusions

- We suggest a heuristic approach for the countermeasure selection problem that considers the system's topology, vulnerabilities, and the interactions between them.
- Experiments show that our method provides cost-effective plans
- Comparison with other methods shows that our approach provides optimal plans (in terms of risk)

Thank you

