
Challenges in OS Security

Daniela Oliveira
University of Florida

GREPSEC II Workshop, May 16-17, 2015

Challenges in OS Security

1. Safe co-existence with extensions

2. Collaboration with hardware

3. Overcoming monoculture

Challenges in OS Security

1. Safe co-existence with extensions

2. Collaboration with hardware

3. Overcoming monoculture

Im
mune Syste

m

Cyber Security x The
Mammalian Immune System

bacteria

viruses

fungi

parasites

toxins

Mammalian Immune
System
Most successful defense system ever deployed

Though it fails sometimes (cancer, auto-immune diseases,
allergies)

Perfected by Nature over millions of years of evolution!

Mammalian Immune
System

Employs high level of cooperation and communication among players

Maintains a symbiotic relationship with our microbiota

Properties Lacking in Computer Security
Approaches

Maintains a symbiotic relationship with our microbiota

Employs high level of cooperation and communication
among players Challe

nge 1

Challe
nge 2

Why don’t we
leverage the
immune
system
mechanisms in
security
approaches?

Safe Co-existence with
Extensions

Kernel extensions represent at least 70% of kernel

Most benign and needed:

Hardware

Kernel
Extensions

Kernel

Kernel Extensions: Trusting
the Untrusworthy
Small fraction is malicious

Kernel
Extensions

Hardware

Kernel

Untrustworthy
Dependence - A Paradox?
OS must co-live with untrustworthy but needed extensions!

Untrustworthy
DependenceImmune system faces the same challenge:

Body made of more bacteria than human cells

Most benign and helpful:

● Digestion, obesity control, eczema, auto-immune
diseases and allergy prevention

Small fraction cause pathologies

Untrustworthy
Dependence

Immune evolved to maintain homeostatic relationship with
microbiota:

Controlling microbial interactions with tissues

● Lessen potential for pathological outcomes

Immune System Approach
1. Confinement of bacteria to certain sites
2. Minimization of direct contact between bacteria and cell surfaces
3. Killing violating bacteria

Challenge 3: Overcoming the Problems
of Computer System Monoculture?

Predictability poses
security problems…
Vulnerabilities exploitable on all systems of same type

● Code Red 2001: 359,000 hosts
infected

● $2 billion in losses

Predictability Makes
Attacker’s Life Easier

Peiter “Mudge”: DARPA Framework for Cyber Security
2011

What If Operating Systems Were Trustworthy
Unpredictable?

Unpredictability in Warfare – Battle of
Salamis (480 B.C)

Unpredictability “Trends”

Address Space Layout Randomization (ASLR)

ISA Randomization

Compiler Specialization

Diverse implementation
N-version programming, library OSes

Still residual certainty that
 benefits attackers!

Variation without unpredictability is not enough!

Trustworthy Unpredictability at OS Level

§ For “good” uses: OS is
predictable -> efficiency
and reliability

§ For “bad” uses: OS
inefficient and unreliable

Selective
Unpredictability

Spectrum Behavior OS
Chameleon

Typical Scenario

Bob, 78, living in a retirement community in Florida

not computer savvy, clicks in links from phishing email,
installing malware

Malware engage in later DDoS attacks

Bob never notices: malware is active only after 1am.

Chameleon Scenario

24

Bob

Preliminary Work

Assumptions:
Malware is usually poorly written

Robust applications have end-to-end checks

Methodology
Use of ptrace to introduce unpredictability at system call level

R. Sun, D. Porter, D. Oliveira and M. Bishop. The Case for Less Predictable
Operating System Behavior. 15th Workshop on Hot Topics in Operating
Systems (HotOS). Kartause Ittingen, Switzerland, May 18-20 2015

Strategies

Strategy 1: Silence the system call
Strategy 2: Change buffer bytes
Strategy 3: Add more wait time
Strategy 4: Change file pointer

Unpredictability Coverage

Only for system calls not critical to process start-up

Keylogger with
Unpredictability
Strategies:

Change write(fd, *buf, size) buffer;

Change lseek(fd, offset, whence) pointer;

Keylogger with
Unpredictability
Strategies:

Change write(fd, *buf, size) buffer;

Change lseek(fd, offset, whence) pointer;

Botnet with
Unpredictability

Strategies:

● Silence read(fd, *buf, size);
● Silence or reduce len in sendto(sockfd, *buf,

len, …);

What About Benign
Software?
Firefox, Thunderbird and Skype

Work normally most of time
Occasional warnings
Functionalities temporarily unavailable

Concluding Remarks

Holy grail of system design: thwart attacker with less effort than
generating attacks
Chameleon makes systems diverse by design and actively secure:

Diverse + Unpredictable: every instance of system behaves
differently

Deceptive: lures adversaries into revealing their strategies

Unpredictability is promising!

Collaborators

Ruimin Sun, PhD Student University of Florida

Don Porter
Stony Brook Matt Bishop

UC Davis
Natalie Ebner

University of Florida

University of Florida is
Rising!

Patrick Traynor
Mobile Security

Kevin Butler
Cyber Physical
Systems

Tom Shrimpton
Crypto Domenic Forte

Hardware Trojan
 Prevention

Swarup Bhunia
Hardware Trojan

 Detection

Mark Tehranipoor
Supply Chain Security

Damon Woodard
Biometrics/fingerprinting

Juan Gilbert
Electronic Voting

Thank you!

daniela@ece.ufl.edu

