On the Privacy Concerns of URL Query Strings

Andrew G. West (Verisign Labs) and Adam J. Aviv (USNA)

May 18, 2014 – Web 2.0 Security & Privacy
URL Query Strings

http://www.example.com/submit.php?key1=val1&key2=val2

“domain” “path” “query string”
URL Query Strings

http://www.example.com/submit.php?key1=val1&key2=val2

“domain” “path” “query string”

• Server-side languages: ASP, CGI, JS, PHP
• 56% of URLs (in our data) have 1+ key-value pairs
URL Query Strings

http://www.example.com/submit.php?key1=val1&key2=val2

“domain” “path” “query string”

- Server-side languages: ASP, CGI, JS, PHP
- 56% of URLs (in our data) have 1+ key-value pairs
- Primarily opaque IDs; sometimes privacy-sensitive
 Exacerbated by Web 2.0 social services; info sharing culture
URL Query Strings

http://www.example.com/submit.php?key1=val1&key2=val2

“domain” “path” “query string”

• Server-side languages: ASP, CGI, JS, PHP
• 56% of URLs (in our data) have 1+ key-value pairs
• Primarily opaque IDs; sometimes privacy-sensitive
 Exacerbated by Web 2.0 social services; info sharing culture
URL Query Strings

http://www.example.com/submit.php?key1=val1&key2=val2

“domain” “path” “query string”

Copy-pasted URLs

- Server-side languages: ASP, CGI, JS, PHP
- 56% of URLs (in our data) have 1+ key-value pairs
- Primarily opaque IDs; sometimes privacy-sensitive
 Exacerbated by Web 2.0 social services; info sharing culture
URL Query Strings

Server-side languages: ASP, CGI, JS, PHP

56% of URLs (in our data) have 1+ key-value pairs

Primarily opaque IDs; sometimes privacy-sensitive

Exacerbated by Web 2.0 social services; info sharing culture
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

• In 892M URLs in public domain we find:
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

- In 892M URLs in public domain we find:
 - Quarter *billion* instances of referral data
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

• In 892M URLs in public domain we find:
 • Quarter *billion* instances of referral data
 • 10+ million more sensitive fields (geo-location, network properties, online and physical identity, phone numbers, etc.)
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

- In 892M URLs in public domain we find:
 - Quarter *billion* instances of referral data
 - 10+ million more sensitive fields (geo-location, network properties, online and physical identity, phone numbers, *etc.*)
 - Isolated examples of authentication tokens
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

• In 892M URLs in public domain we find:
 • Quarter *billion* instances of referral data
 • 10+ million more sensitive fields (geo-location, network properties, online and physical identity, phone numbers, *etc.*)
 • Isolated examples of authentication tokens
• Non-intentional disclosures revealed in plain-text
The Authors’ Position

URL-BASED PRIVACY CONCERNS ARE SIGNIFICANT

• In 892M URLs in public domain we find:
 • Quarter *billion* instances of referral data
 • 10+ million more sensitive fields (geo-location, network properties, online and physical identity, phone numbers, etc.)
 • Isolated examples of authentication tokens
• Non-intentional disclosures revealed in plain-text

WEB 2.0 SERVICES IDEAL FOR PRIVACY LOGIC

• Web 2.0 is medium by which many links arrive on public web
• Strip params unnecessary for rendering; retroactively sanitize
How do we approach this?

1. Measurement study over 892M user-sourced URLs
2. “CleanURL” (a privacy-aware link transformation service)
URL Corpus (Basic Properties)

- ≈892 million URLs from early 2014
- Provided by an industry service provider
URL Corpus (Basic Properties)

- ≈892 million URLs from early 2014
- Provided by an industry service provider
- URLs submitted by end-users; provider’s service eases link tracking and handling
- Links commonly found posted to Web 2.0 social services.
URL Corpus (Basic Properties)

- ≈892 million URLs from early 2014
- Provided by an industry service provider
- URLs submitted by end-users; provider’s service eases link tracking and handling
- Links commonly found posted to Web 2.0 social services.

• How common are parameters:
 • 490M URLs (54.9%) w/1+ pair
 • 44.6M URLs (5%) w/5+ pairs
 • 23.4K URLs w/100+ pairs
URL Corpus (Basic Properties)

- ≈892 million URLs from early 2014
- Provided by an industry service provider
- URLs submitted by end-users; provider’s service eases link tracking and handling
- Links commonly found posted to Web 2.0 social services.

• How common are parameters:
 - 490M URLs (54.9%) w/1+ pair
 - 44.6M URLs (5%) w/5+ pairs
 - 23.4K URLs w/100+ pairs

• Broader perspective:
 - 1.3 billion key-value pairs total
 - 909k unique key names
Common Query String Keys
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>-----</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>---- **</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>----</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLS w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances*
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>----</td>
<td>892,934,790</td>
</tr>
<tr>
<td></td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>utm_source, ref, tracksrc, referer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referer, source, src, sentFrom, referralSource, referral_source</td>
<td></td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances*
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>****</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,142,654</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>****</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,142,654</td>
</tr>
<tr>
<td>Authentication</td>
<td>login_password, pwd</td>
<td>672,948</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>----</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,142,654</td>
</tr>
<tr>
<td>Authentication</td>
<td>login_password, pwd</td>
<td>672,948</td>
</tr>
<tr>
<td>Identity (real)</td>
<td>name1, name2, gender</td>
<td>533,222</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td>----</td>
<td>892,934,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td>****</td>
<td>490,227,789</td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo-location</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,142,654</td>
</tr>
<tr>
<td>Authentication</td>
<td>login_password, pwd</td>
<td>672,948</td>
</tr>
<tr>
<td>Identity (real)</td>
<td>name1, name2, gender</td>
<td>533,222</td>
</tr>
<tr>
<td>Phone</td>
<td>phone</td>
<td>56,267</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs (2)

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>URLs</td>
<td>Prevalence may be under-reported</td>
<td></td>
</tr>
<tr>
<td>Referrer data</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>259,490,318</td>
</tr>
<tr>
<td>Geo</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,961,565</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824,398</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,142,654</td>
</tr>
<tr>
<td>Authentication</td>
<td>login_password, pwd</td>
<td>672,948</td>
</tr>
<tr>
<td>Identity (real)</td>
<td>name1, name2, gender</td>
<td>533,222</td>
</tr>
<tr>
<td>Phone</td>
<td>phone</td>
<td>56,267</td>
</tr>
</tbody>
</table>

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Privacy-sensitive Key-value Pairs (2)

<table>
<thead>
<tr>
<th>THEME</th>
<th>KEYS</th>
<th>SUM#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL URLs</td>
<td></td>
<td>8,790</td>
</tr>
<tr>
<td>URLs w/keys</td>
<td></td>
<td>4,902</td>
</tr>
<tr>
<td>Referrer</td>
<td>utm_source, ref, tracksrc, referrer, source, src, sentFrom, referralSource, referral_source</td>
<td>2,594</td>
</tr>
<tr>
<td>Geo</td>
<td>my_lat, my_lon, zip, country, coordinate, hours_offset, address</td>
<td>5,962</td>
</tr>
<tr>
<td>Network</td>
<td>ul_speed, dl_speed, network_name, mobile</td>
<td>3,824</td>
</tr>
<tr>
<td>Identity (online)</td>
<td>uname, user_email, email, user_id, user, login_account_id</td>
<td>2,143</td>
</tr>
<tr>
<td>Authentication</td>
<td>login_password, pwd</td>
<td>673</td>
</tr>
<tr>
<td>Identity (real)</td>
<td>name1, name2, gender</td>
<td>533</td>
</tr>
<tr>
<td>Phone</td>
<td>phone</td>
<td>56,27</td>
</tr>
</tbody>
</table>

Prevalence may be **under-reported**
- Naming conventions are non-standardized:
 - 103K instances of key “email”
 - 637K (6.2×) keys pattern match “*email*”
 - 1.7M (16.5×) instances where value is an email address
 - 2000+ unique keys have email values

Must be **cautious** of such claims
- Not all values are sensitive (just a majority per Monte Carlo)
- No idea which of these values are “personal”
 - Ex: do geo-coordinates locate user? Or a monument?

* Produced using Monte-Carlo over manual inspection of 861 keys w/100k+ instances
Authentication Tokens in Query Strings

- Password values are *almost* always encrypted
Authentication Tokens in Query Strings

- Password values are *almost* always encrypted
- Best practices adhered to (*i.e.*, salting)
 - Variable-length MD5/SHA hashes of 100 most common passwords produced no hits in our corpus
Authentication Tokens in Query Strings

• Password values are *almost* always encrypted

• Best practices adhered to (*i.e.*, salting)
 • Variable-length MD5/SHA hashes of 100 most common passwords produced no hits in our corpus

• Several dozen instances of full credentials in plain-text
Authentication Tokens in Query Strings

- Password values are *almost* always encrypted
- Best practices adhered to (i.e., salting)
 - Variable-length MD5/SHA hashes of 100 most common passwords produced no hits in our corpus
- Several dozen instances of full credentials in plain-text

“Grand slam” examples, redacted:

- [media]/xmlrpc.php?cmd=getVideos&username=admin&password=█
- [medical]/index.aspx?accountname=█health&username=█&password=█
- [healthcare]/?do=patient&directAccess=yes&username=█&password=█
Value Entropy

- Diversity/entropy of key’s value set
 - Few values = little diversity = less revealing (e.g., gender)
Value Entropy

- Diversity/entropy of key’s value set
 - Few values = little diversity = less revealing (e.g., gender)
 - Diversity calculation, d, lies on $[0,1]$
 - Most privacy-relevant keys on $0.33 < d < 0.66$
Value Entropy

- Diversity/entropy of key’s value set
 - Few values = little diversity = less revealing (e.g., gender)
 - Diversity calculation, d, lies on $[0,1]$
 - Most privacy-relevant keys on $0.33 < d < 0.66$

- Distribution of value set also interesting:

```
key = utm_source (128M instances)
```

```
% URLs with value at rank <= x

R#1 = twitterfeed = 34M
R#2 = share_petition = 9M
```
Value Entropy

- Diversity/entropy of key’s value set
 - Few values = little diversity = less revealing (e.g., gender)
 - Diversity calculation, d, lies on $[0,1]$
 - Most privacy-relevant keys on $0.33 < d < 0.66$

- Distribution of value set also interesting:

```plaintext
key = utm_source (128M instances)

R#1 = twitterfeed = 34M
R#2 = share_petition = 9M

key = secureCode (275k instances)
```
How do we approach this?

1. Measurement study over 892M user-sourced URLs
2. “CleanURL” (a privacy-aware link transformation service)
Argument Removal Logic

Key-value *NECESSITY*

- Is pair needed for faithful rendering?
Argument Removal Logic

Key-value **NECESSITY**

- Is pair needed for faithful rendering?

(1) No change w/removal

\[\text{zip} = 12345 \text{ (remove)} \]
Argument Removal Logic

Key-value **NECESSITY**

- Is pair needed for faithful rendering?

(1) No change w/removal

\[\text{zip} = 12345 \text{ (remove)} \]

(2) Orthogonal to main content

\[\text{zip} = 12345 \text{ (remove)} \]
Argument Removal Logic

Key-value **NECESSITY**

- Is pair needed for faithful rendering?

(1) No change w/removal

| zip = 12345 (remove) |

(2) Orthogonal to main content

| zip = 12345 (remove) |

(3) Unfaithful render

| Error: 404 Unavailable |

| zip = 12345 (warn user) |
Argument Removal Logic

Key-value **NECESSITY**
- Is pair needed for faithful rendering?
- Programmatically difficult
 - Visual hamming distance
 - HTML tag delta size
Argument Removal Logic

Key-value **NECESSITY**
- Is pair needed for faithful rendering?
- Programmatically difficult
 - Visual hamming distance
 - HTML tag delta size

Key-value **SENSITIVITY**
- Does pair contain private information?
Argument Removal Logic

Key-value **NECESSITY**
- Is pair needed for faithful rendering?
- Programmatically difficult
 - Visual hamming distance
 - HTML tag delta size

Key-value **SENSITIVITY**
- Does pair contain private information?
- Programmatically difficult
 - Regexes gleaned from manual work
 - Mining corpora w/metrics such as entropy
 - Human feedback loops once online

(1) No change w/removal
- \(\text{zip} = 12345\) (remove)

(2) Orthogonal to main content
- \(\text{zip} = 12345\) (remove)

(3) Unfaithful render
- Error: 404
- Unavailable
- \(\text{zip} = 12345\) (warn user)
CleanURL – Privacy Aware Link Transformer

1

http://www.example.com?key1=val1...

Submit
CleanURL – Privacy Aware Link Transformer

1. http://www.example.com?key1=val1...

2. Choose the left-most version that appears as you expect. Our best guess has been selected by default.

www.example.com?key1=val1&key2=val2&key3=val3
CleanURL – Privacy Aware Link Transformer

Choose the left-most version that appears as you expect.
Our best guess has been selected by default.

Your cleaned URL: [[base_url]]/R09XVIUh
Conclusion

POSITION: URL query strings have significant privacy impacts; social platforms should help curb issue as they are appropriate locales for privacy-preserving logic.
Conclusion

POSITION: URL query strings have significant privacy impacts; social platforms should help curb issue as they are appropriate locales for privacy-preserving logic

- Motivational measurements over large URL corpus show personal data frequent and in plaintext
- CleanURL: A service proposed for URL sanitization
Conclusion

POSITION: URL query strings have significant privacy impacts; social platforms should help curb issue as they are appropriate locales for privacy-preserving logic

- Motivational measurements over large URL corpus show personal data frequent and in plaintext
- CleanURL: A service proposed for URL sanitization

CLOSING THOUGHTS / FUTURE:
- Direct scrapes off of the firehose/sprinkler APIs
Conclusion

POSITION: URL query strings have significant privacy impacts; social platforms should help curb issue as they are appropriate locales for privacy-preserving logic

• Motivational measurements over large URL corpus show personal data frequent and in plaintext

• CleanURL: A service proposed for URL sanitization

CLOSING THOUGHTS / FUTURE:

• Direct scrapes off of the firehose/sprinkler APIs
• Can domain sensitivity be learned from human feedback?
• Best practices involve HTTPS/TLS/SSL
powered by VERISIGN