
On the Privacy Concerns of URL Query Strings

Andrew G. West
Verisign Labs

Reston, VA, USA
awest@verisign.com

Adam J. Aviv
U.S. Naval Academy
Annapolis, MD, USA

aviv@usna.edu

Abstract—URLs often utilize query strings (i.e., key-value
pairs appended to the URL path) as a means to pass session
parameters and form data. Often times these arguments are not
privacy sensitive but are necessary to render the web page. How-
ever, query strings may also contain tracking mechanisms, user
names, email addresses, and other information that users may
not wish to reveal. In isolation such URLs are not particularly
problematic, but the growth of Web 2.0 platforms such as social
networks and micro-blogging means URLs (often copy-pasted
from web browsers) are increasingly being publicly broadcast.

This position paper argues that the threat posed by such
privacy disclosures is significant and prevalent. It demonstrates
this by analyzing 892 million user-submitted URLs, many dis-
seminated in (semi-) public forums. Within this corpus our case-
study identifies troves of personal data including 1.7 million
email addresses. In the most egregious examples the query string
contains plaintext usernames and passwords for administrative
and extremely sensitive accounts. With this as motivation the
authors propose a privacy-aware service named “CleanURL”.
CleanURL’s goal is to transform input addresses by stripping non-
essential key-value pairs and/or notifying users when sensitive
data is critical to proper page rendering. This logic is based
on difference algorithms, mining of URL corpora, and human
feedback loops. Though realized as a link shortener in its
prototype implementation, CleanURL could be leveraged on any
platform to scan URLs before they are published or retroactively
sanitize existing links.

I. INTRODUCTION

Uniform resource locators (URLs) often contain func-
tionality that allows data to be passed to server-side web
applications. For example, the following URL:

http://www.ex.com/content.php?key1=val1&key2=val2

contains a set of key-value pairs (or application parameters)
which collectively are called the query string. Query strings are
common, with our dataset showing 56% of URLs have 1+ key-
value pair(s). These are used for a variety of purposes when
retrieving web content, but not all parameters may be necessary
or desirable for the faithful retrieval of a web document.
Such strings may contain tracking metrics or more sensitive
information such as user IDs, location data, or passwords.

In isolation such URLs are of minimal concern, at most
susceptible to shoulder surfing attacks. The problem is mas-
sively exacerbated when URLs are shared and published
online. The URL and the sensitive data in the query string then
becomes available to marketers, spammers harvesting contact
information, and cyber-criminals with nefarious intentions. It
comes as no surprise that a tremendous quantity of URLs

end up on the public web, in no small part due to a Web
2.0 culture increasingly characterized by social networking
and information sharing [1]. Moreover, since many posting
environments are profile driven a history of contributions could
reveal considerable private user data [2].

In this position paper we argue that these impacts on user
privacy are significant and prevalent. Additionally, we feel
social platforms have been insufficient in curbing such leaks,
despite being intuitive locales for privacy preserving logic.

To the best of our knowledge the privacy ramifications of
URLs and their query strings has not been previously analyzed
(Sec. II). However, others have examined broader security
considerations of URL transformation services and argument
passing. Link shortening services have been an area of focus,
as their obfuscation of URLs has enabled phishing and other
abuses [3], [4], [5]. Others have produced specifications for
cross-organizational parameter passing [6] and described the
intentional manipulation of key-value pairs [7].

Given this lack of prior work we substantiate our position
by undertaking a proof-of-concept measurement study over
892 million user-submitted URLs (Sec. III). These URLs
contain 1.3 billion key-value pairs which were analyzed for
sensitive data. We find over a quarter-billion plaintext pairs
involved in referral tracking, with more than 10 million pairs
possibly revealing some form of demographic, identity-based,
or geographical information. In extreme examples, user and
password authentication credentials were found in plaintext.
Given non-standardized naming conventions, these quantities
represent the lower bound on what is clearly an issue of
significant severity and scale. For example, 2000+ unique key
labels have email address values, with our analysis only able
to consider the most popular such keys.

Fortunately, the social platforms via which URLs are often
published and/or shortened offer an opportunity to identify pri-
vacy violating URLs. We propose a privacy-aware URL trans-
formation service called “CleanURL” that provides platforms
and their end-users with a mechanism to identify, remove,
and assess privacy trade-offs for an input URL (Sec. IV). In
its prototype form our service is presented as a stand-alone
link shortener. The algorithmic detection of privacy-sensitive
and/or unnecessary arguments presents research challenges.
Towards these challenges we describe preliminary work on
the use of: (1) Visual and document difference algorithms to
measure effects on page rendering. (2) Extrapolations from
manual analyses about the expected format of sensitive keys
and values. (3) Feedback loops from the interface to understand
privacy trade-offs and human factors.

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8

%
 U

R
Ls

 w
ith

<
=

x
pa

irs

quantity of key-value pairs

Fig. 1: CDF for quantity of key-value pairs in URLs

II. RELATED WORK

Link shortening services are similar to our proposal in that
they also transform input URLs. Such shorteners place a single
redirection alias between a short link and its full representation.
While convenient for presentation purposes and length con-
strained settings [1], shorteners do not sanitize links. Instead,
these services provide one-hop of concealment/obfuscation
for plaintext URLs. While this aids privacy by superficially
keeping query strings from public view, it also prevents the raw
URL from being interpreted by human users. This combined
with the ease of link generation make shorteners a catalyst
in a variety of attacks [8], including spam, phishing, and
DNS fast-fluxing [3], [4], [5], [9], [10]. Tools like URL X-
ray (www.urlxray.com) reveal the URL destination of
these links without the consequences of clicking-through. Our
proposed CleanURL service aims to strip sensitive key/values
from URLs in an irreversible fashion; it is at the user’s discre-
tion whether these “clean” URLs are subsequently shortened.

To our knowledge no prior work directly addresses the pri-
vacy issues associated with URL query string parameters. That
being said, early work did consider privacy when developing
specifications for cross-organizational parameter sharing [6].
Moreover, [7] provides perspective on how these parameters
are being utilized by server-side applications and might be
manipulated. Finally, [2] discusses the privacy consequences
of longitudinal tracking and data collection on the web, a
phenomena enabled in part by query string use.

The CleanURL service needs to determine the affect of
parameters on page rendering, even in the presence of dynamic
content. Recent work in the Internet censorship domain de-
scribes the use of Merkle hash trees over page’s DOM structure
to detect such differences [11]. Vi-DIFF [12] takes a more
visual approach to understanding the content and structural
evolution of webpages. Our prototype currently prefers sim-
pler heuristics, but either of these proposals could be viable
improvements as our system matures.

III. MOTIVATIONAL MEASUREMENTS

To demonstrate the privacy concerns of query strings
and motivate the CleanURL service a large URL corpus is
analyzed. That corpus is described (Sec. III-A) and examined
for common query string use-cases (Sec. III-B). Then attention
turns to key-value pairs with privacy implications (Sec. III-C)
and their entropy (Sec. III-D).

A. Data Source & Summary

URLs for analysis were obtained from an industry partner
which has access to a large quantity of URLs submitted

Fig. 2: Word cloud for common keys. Size indicates preva-
lence, with log2 applied to size weights for presentation

directly by end-users. The nature of this partner service is
such that it eases link tracking and handling, meaning the
vast majority of submitted links are later found posted to Web
2.0 social and collaborative services. Thus, sensitive query
string information is likely to find itself in the (semi-) public
domain where it may be harvested by peers, marketers, or
cyber-criminals. Our URL set consists of 892 million URLs,
490 million (54.9%) of which have 1+ key-value pairs (Tab. I).
Some 5% of URLs have greater than 5 pairs and 23.4k URLs
had more than 100 (Fig. 1). There are roughly 909k unique
keys producing 1.3 billion total key-value pairs.

B. Common Query String Use-cases

The word cloud of Fig. 2 visualizes the most common keys
in our data. Leading the way is key utm_source with 128.5
million instances; in 14% of all shortened addresses. That key
– like 7 of the 10 most popular – and all those prefixed by
“utm” are used to monitor referrers and traffic campaigns.
The “Urchin tracking model” (UTM) is a structured means of
link tracking that has become widespread due to its integration
into the Google Analytics platform. In contrast, many keys are
ambiguous in meaning and/or used by specific web platforms
without an obvious naming convention. Single-letter keys are
very common as are those that build around “id”.

C. Privacy-sensitive Pairs

The bulk of query strings are uninteresting, serving as
opaque identifiers of system objects or benign session parame-
ters. More interesting are those that reveal personal information
about the identity, location, network, etc. of whomever visited
and subsequently shared a URL. At this point we do not
concern ourselves with whether these sensitive key-value pairs
are intended or crucial to page rendering, only that they are
present within the URL.

Tab. I groups keys by the theme of information they reveal.
Constructing this table involved manually inspection of the
861 keys with 100k+ occurrences. While key names are often
indicative of their use, we also surveyed the values associated
with those keys to confirm that sensitive data is present.1
For example, we want to confirm that zip keys usually
have 5-digit numerical values. With the exception of the
“authentication” category, plaintext and human-readable values
are the norm. Thus, Tab. I makes clear a tremendous amount of

THEME KEYS SUM-#
ALL URLS — 892,934,790

URLS w/keys * 490,227,789
referrer data utm_source, ref,

tracksrc, referrer,
source, src, sentFrom,
referralSource,
referral_source

259,490,318

geo. location my_lat, my_lon, zip,
country, coordinate,
hours_offset, address

5,961,565

network props. ul_speed, dl_speed,
network_name, mobile

3,824,398

online identity uname, user_email,
email, user_id, user,
login_account_id

2,142,654

authentication login_password, pwd 672,948
personal identity name1, name2, gender 533,222

phone phone 56,267

TABLE I: Keys w/100k+ occurrences having likely privacy
ramifications, based on manual inspection1

personal information is potentially leaked via published URLs.
In some ways this table under reports the risks. For example,
the key “email” appears 103k times but there are 637k pairs
where the key matches the pattern *email*. Further, there
are 1.7 million email addresses in the corpus based on a pattern
match over values, mapping to 2000+ unique key labels.

However, one must also be careful about such claims. There
is no way of knowing to what extent values are “personal”.
Geographic coordinates in a URL could be referencing a
user’s exact location or, quite differently, be centering a map
application over a landmark. We do not attempt to validate
any of the mined personal information because of ethical
considerations. This is particularly relevant when handling
authentication credentials. Fortunately, when password or its
analogues are present the values are almost always encrypted.
Moreover, it seems that best practices are followed (e.g., salt-
ing) as the MD5 and SHA hashes of 100 common passwords
matched no values. Unfortunately, there are isolated examples
(our shallow search found several dozen) of full credentials
being passed in plain text via a query string. In the most
egregious examples: (1) the credentials to an “admin” account
were revealed, and (2) the user/password were for a site serving
extremely personal information. These situations are “smoking
gun” examples that would prove interesting to readers. Regret-
tably, the sensitivities surrounding these URLs are such that
they cannot be published without significant redaction (e.g.,
https://www.�.com/index.aspx?accountname=�
&username=�&password=�).

D. Value Entropy

The previous sections elucidate our position that query
strings have privacy concerns, while demonstrating the prob-
lem is difficult to quantify. An online system to reduce such
data leakage needs an algorithmic means to detect sensitive
key-value pairs. Our work has discovered the diversity or
entropy of a key’s value set is helpful in this respect. For
example, a key that is used in a binary fashion will have few
unique values and low entropy. Even if this information were

1We do not contend that every value associated with these keys is privacy
revealing. Instead we use Monte-Carlo sampling to confidently determine that
at least a majority of values match an expected format.

personal (e.g., via the gender key) it does not reveal a terrible
amount about the user in question. In contrast, high entropy
keys have so many unique values that they can describe very
specific properties towards identifying an individual.

Based on a diversity (d) calculation that lies on (0, 1]
we find that most of the keys we identify in Tab. I lie
on 0.33 < d < 0.66, in turn helping us find additional
sensitive (but less popular) keys. Examples of these keys and
their diversity metric include user (0.53), email (0.49),
and my_lat + my_lon (both 0.38). We suspect analysis
of the key distribution could also be insightful. Whereas the
above examples are quite uniformly distributed, keys like
utm_source follow a power-law distribution led by values
twitterfeed (self-explanatory; 26% of all values) and
share_petition (from change.org; 7.5% of values).

IV. LINK SHORTENING SERVICE

Discussion now shifts to CleanURL, our proposal to reduce
privacy disclosures via URL query strings. CleanURL consists
of back-end logic to determine the (1) necessity, and (2) sensi-
tivity of key-value pairs (Sec. IV-A). The output of the system
is a sanitized URL that is graphically presented to end-users
for confirmation or modification of that result (Sec. IV-B).

A. Argument Removal Logic

When attempting to sanitize a URL there are two properties
of each key-value pair to assess: its sensitivity, whether the
value contains private data – and its necessity, whether the
content of the page renders correctly if the pair is removed.
As an example, consider pair zipcode=12345 which meets
our sensitivity criteria. The exclusion of that pair might have
3 possible results: (1) The pair in no way affects page
rendering. (2) The pair non-significantly affects rendering (e.g.,
the zipcode was being used by a weather widget in the sidebar,
orthogonal to main content). (3) The pair significantly breaks
rendering (e.g., the entire page previously displayed weather
for the zipcode, but now redirects elsewhere). Under conditions
1 and 2 the pair would be stripped from the output URL,
whereas situation 3 would issue a warning to the user. Non-
sensitive and non-necessary pairs can also be stripped.

While simply stated, programmatic methods for sanitiza-
tion logic are complex. With respect to necessity we consider:

• VISUAL DIFF: The two URLs (pair inclusive and
exclusive) are rendered as down-scaled bitmaps with
a standardized viewport and the Hamming distance
between the images is calculated.

• HTML TAG DIFF: The HTML source of the two URLs
is parsed to remove visible text content. Over the
remaining content (i.e., HTML tags) a standard textual
diff is applied and the delta size computed.

Both have proven moderately effective in preliminary testing.
The primary complication is the presence of dynamic content
(e.g., advertisement images changing on every reload). This
is one advantage of the HTML diff: although advertisements’
visual impact may be significant, the code used to fetch them
is often quite static. In practice one needs to select or learn
diff thresholds which can tolerate small amounts of dynamic
noise and well represent the degree of change.

Your cleaned URL: [[base_url]]/R09XVIUh3

www.example.com?key1=val1&key2=val2&key3=val3

Choose the left-most version that appears as you expect.
Our best guess has been selected by default.2

http://www.example.com?key1=val1...

1

Fig. 3: Simplified screenshots detailing CleanURL interface

With respect to determining pair sensitivity we rely on:

• Regular expressions gleaned from the naming patterns
of known sensitive keys. It is also possible to pattern
match over structured sensitive values, e.g., when
email addresses are present.

• Mining URL corpora with metrics like key entropy,
which can indicate sensitive pairs per Sec. III-D.

• Human feedback loops about output correctness per
the CleanURL GUI (see next subsection). Note such
feedback will only be available after public release.

B. CleanURL User Interface

Recall that for prototyping purposes we wrap our san-
itization logic as a stand-alone link shortening service. A
typical session with the shortener is depicted in Fig. 3. A user
begins by entering a URL in a simple form field. This sets
off the computational removal logic whereby all combinations
of parameters from the query URL are enumerated. For each
parameter combination the webpage source (i.e., HTML) is
downloaded, visually rendered, and input into our diff func-
tions. Sensitivity properties are also investigated. Ultimately,
combinations are sorted from most-to-least privacy preserving.

This ordering is the basis by which screenshots are pre-
sented in a “shuffle” selector to the end-user (see Fig. 3). The
“suggested” version is selected by default: the combination that
faithfully renders the page while removing the most sensitive
parameters. If a sensitive parameter cannot be removed the
end-user will be notified. Our design goal was to visualize the
impact of URL manipulation and achieve end-user awareness
while still maintaining a clean, simple, and usable interface.
The user is free to browse/shuffle through all presented combi-
nations. Both a sanitized and shortened URL is returned once
a selection is confirmed. If our logic was too aggressive in
removing parameters this interface gives the user a chance
to correct that error. It also provides an opportunity to better
understand human factors, collect ground-truth, and analyze
the sensitivities surrounding certain data types.

V. CONCLUSION

In conclusion, we have analyzed 892 million user-
submitted URLs, many of which are destined for public broad-
cast. We found that many of these links have query strings with
key-value pairs containing sensitive data ranging from track-
ing identifiers (utm_*) to contact details (email), location
information (my_lat, my_lon), and even passwords. These
results motivate our position that the privacy impact of URL
query strings should be analyzed further, especially given our
prevalent Web 2.0 information sharing culture.

Our proposed CleanURL system addresses the privacy
ramifications of URL query strings. Input URLs are pro-
grammatically analyzed to identify which key-value pairs lack
necessity (do not affect page rendering) or are sensitive (reveal
private information). CleanURL’s eventual launch will permit
usability measurements and leverage human feedback loops.
Future work will also explore the impacts of REST-friendly
URLs (where key-values are embedded along the URL path)
and the notion that key sensitivity might vary as a function
of the host domain. In total, we hope the evidence presented
herein will encourage more dialogue and research into related
Web 2.0 privacy issues.

Acknowledgements: Daniel Kim and Kevin Su are thanked for their
contributions on a preliminary version of this work [13].

REFERENCES

[1] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos, S. Ioannidis,
E. P. Markatos, and T. Karagiannis, “We.B: The web of short URLs,”
in WWW ’11: Proc. of the 20th Intl. Conf. on World Wide Web, 2011.

[2] B. Krishnamurthy and C. Wills, “Privacy diffusion on the web: A longi-
tudinal perspective,” in WWW ’09: Proceedings of the 18th International
Conference on World Wide Web, 2009.

[3] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross,
C. Kruegel, and G. Vigna, “Two years of short URLs Internet measure-
ment: Security threats and countermeasures,” in WWW ’13: Proceedings
of the 22nd International Conference on World Wide Web, 2013.

[4] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Kumaraguru,
“Phi.sh/$ocial: The phishing landscape through short URLs,” in CEAS
’11: Proceedings of the 8th Annual Collaboration, Electronic Messag-
ing, Anti-Abuse and Spam Conference, 2011.

[5] S. Lee and J. Kim, “Fluxing botnet command and control channels with
URL shortening services,” Computer Comm., vol. 36, no. 3, Feb. 2013.

[6] B. Pfitzmann and M. Waidner, “Privacy in browser-based attribute
exchange,” in WPES ’02: Proceedings of the ACM Workshop on Privacy
in the Electronic Society, 2002.

[7] M. Balduzzi, C. Gimenez, D. Balzarotti, and E. Kirda, “Automated
discovery of parameter pollution vulnerabilities in web applications,”
in NDSS ’11: Proc. of the Network and Dist. Sys. Security Sym., 2011.

[8] D. Weiss, “The security implications of URL shorten-
ing services,” April 2009, http://unweary.com/2009/04/
the-security-implications-of-url-shortening-services.html.

[9] F. Klien and M. Strohmaier, “Short links under attack: Geographical
analysis of spam in a URL shortener network,” in HT ’12: Proceedings
of the 23rd ACM Conference on Hypertext and Social Media, 2012.

[10] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: The under-
ground on 140 characters or less,” in CCS ’10: Proceedings of the 17th
ACM Conference on Computer and Communications Security, 2010.

[11] J. Wilberding, A. Yates, M. Sherr, and W. Zhou, “Validating web content
with Senser,” in ACSAC ’13: Proceedings of the 29th Annual Computer
Security Applications Conference, December 2013.

[12] Z. Pehlivan, M. Ben-Saad, and S. Gançarski, “Vi-DIFF: Understanding
web pages changes,” in DEXA ’10: Proceedings of the 21st Interna-
tional Conference on Database and Expert Systems Applications, 2010.

[13] D. Kim, K. Su, A. G. West, and A. J. Aviv, “CleanURL: A privacy
aware link shortener,” Univ. of Penn., Tech. Rep. MS-CIS-12-12, 2012.

