
Fast and efficient Browser Identification with
JavaScript Engine Fingerprinting

Martin Mulazzani, Philipp Reschl, Manuel Leithner,
Markus Huber, Edgar Weippl

SBA Research
Vienna, Austria



Outline

Motivation & Background

JavaScript Engine Fingerprinting
Methodology
Minimal Fingerprints
Decision Trees

Evaluation
Evaluation - Tor Browser Bundle
Evaluation - Survey



Motivation

Browser Identification:

I Accurately identify the browser used by the client

I Webserver point-of-view

I Motivated by nmap for TCP/IP fingerprinting
I Limitations of UserAgent string:

I Can be set arbitrarily
I Not a security feature

Different use cases:

I Detect UserAgent string manipulations

I Detect session hijacking

I Browser-specific malware



Motivation

Browser Identification:

I Accurately identify the browser used by the client

I Webserver point-of-view

I Motivated by nmap for TCP/IP fingerprinting
I Limitations of UserAgent string:

I Can be set arbitrarily
I Not a security feature

Different use cases:

I Detect UserAgent string manipulations

I Detect session hijacking

I Browser-specific malware



Browser Market

Browser market currently very competitive:

I Man-years of development time

I Fight for market shares, especially smartphones

I Become more & more powerful (e.g., Cloud computing,
HTML5, ...)

I New features:
I JIT, GPU rendering, remote rendering, Sandboxing
I Mostly performance or security



Browser Market :)



Methodology

Our approach:
I Use JavaScript (ECMAScript 5.1) conformance tests

I test262 - http://test262.ecmascript.org
I Sputnik - http://sputnik.googlelabs.com

I More than 11.000 test cases

I Javascript engines fail at different test cases

In the future:
I Enhance session security

I by locking session to specific browser version

I Increase user privacy
I by detecting (attacking) fingerprinting

http://test262.ecmascript.org
http://sputnik.googlelabs.com


Methodology

Our approach:
I Use JavaScript (ECMAScript 5.1) conformance tests

I test262 - http://test262.ecmascript.org
I Sputnik - http://sputnik.googlelabs.com

I More than 11.000 test cases

I Javascript engines fail at different test cases

In the future:
I Enhance session security

I by locking session to specific browser version

I Increase user privacy
I by detecting (attacking) fingerprinting

http://test262.ecmascript.org
http://sputnik.googlelabs.com


Methodology

Our approach:
I Use JavaScript (ECMAScript 5.1) conformance tests

I test262 - http://test262.ecmascript.org
I Sputnik - http://sputnik.googlelabs.com

I More than 11.000 test cases

I Javascript engines fail at different test cases

In the future:
I Enhance session security

I by locking session to specific browser version

I Increase user privacy
I by detecting (attacking) fingerprinting

http://test262.ecmascript.org
http://sputnik.googlelabs.com


Related Work

Recent paper by Mowery et.al, W2SP 2011

I Use 39 Javascript benchmarks e.g., Sunspider or V8
Benachmark Suite

I Generate normalized fingerprint based on time pattern

I On average 190 seconds runtime

Our approach:

I Takes less then 200ms (3 orders of magnitude faster)

I not stalling the CPU noticeably

I Few hundred lines of Javascript max.

I Collected > 150 OS and browser combinations



Related Work

Recent paper by Mowery et.al, W2SP 2011

I Use 39 Javascript benchmarks e.g., Sunspider or V8
Benachmark Suite

I Generate normalized fingerprint based on time pattern

I On average 190 seconds runtime

Our approach:

I Takes less then 200ms (3 orders of magnitude faster)

I not stalling the CPU noticeably

I Few hundred lines of Javascript max.

I Collected > 150 OS and browser combinations



Related Work

Other related work:

I EFF’s Panopticlick, PETS 2010
I Mowery et.al, W2SP 2012

I uses novel HTML5 features and WebGL rendering

I Upcoming paper on HTML5 and CSS3 features (ARES 2013)



test262



test262: Browser - OS Combinations



test262: Browser - OS Combinations



Distinguish Browsers

Random subset of test262 test cases:

Web Browser 15.4.4.4-5-c-i-1 13.0-13-s

Opera 11.61 ! %

Firefox 10.0.1 ! %

Internet Explorer 9 % !

Chrome 17 % %

Web Browser S15.2.3.6 A1 10.6-7-1 S10.4.2.1 A1

Opera 11.61 % % %

Firefox 10.0.1 % ! %

Internet Explorer 9 % % !

Chrome 17 ! % !



Two Methods

Propose two different methods:

1. Minimal fingerprints
I Find out if a browser is lying about it’s UserAgent

2. Iterative decision trees
I Find browser with no a-priory knowledge

Sharing is caring:

I Will release code & collected dataset

I Lost due to hardware failure

I Drop me an email for current version

I Always test your backups!



Two Methods

Propose two different methods:

1. Minimal fingerprints
I Find out if a browser is lying about it’s UserAgent

2. Iterative decision trees
I Find browser with no a-priory knowledge

Sharing is caring:

I Will release code & collected dataset

I Lost due to hardware failure

I Drop me an email for current version

I Always test your backups!



Minimal Fingerprints

Goal: Determine minimal fingerprints

1. Define the testset (=set of browsers)

2. Collect failed test cases

3. Calculate minimal fingerprints

4. For every client: Run fingerprints

Result: If browser version ∈ testset: confirm browser version

“Mind the gap:”

I Propably not for every testset solvable

I Can become “big”



Minimal Fingerprints

Goal: Determine minimal fingerprints

1. Define the testset (=set of browsers)

2. Collect failed test cases

3. Calculate minimal fingerprints

4. For every client: Run fingerprints

Result: If browser version ∈ testset: confirm browser version

“Mind the gap:”

I Propably not for every testset solvable

I Can become “big”



Decision Trees

Goal: Minimize number of tests run at the client

1. Define the testset (=set of browsers)

2. Collect failed test cases

3. Calculate uniqueness of every failed test case

4. Build binary decision tree, iteratively

Result: Minimal path through decision tree for unknown browsers

Benefits:

I O(logn) instead of O(n)

I Thus even faster

I Can be used as first stage for minimal fingerprinting



Decision Trees

Goal: Minimize number of tests run at the client

1. Define the testset (=set of browsers)

2. Collect failed test cases

3. Calculate uniqueness of every failed test case

4. Build binary decision tree, iteratively

Result: Minimal path through decision tree for unknown browsers

Benefits:

I O(logn) instead of O(n)

I Thus even faster

I Can be used as first stage for minimal fingerprinting



Decision Trees

15.4.4.4-
5-c-i-1

10.6-7-1 13.0-13-s 



Evaluation - Tor Browser Bundle

Basics Tor:

I Internet anonymization network

I Hides a user’s real IP adress

I Hundreds of thousands users every day

I Approx. 3000 servers run by volunteers

Tor Browser Bundle:
I Among other features: Uniform UserAgent

I to increase size of the anonymity set

I Everything prepackaged (Tor, Vidalia, Firefox, ...)

I Runs without admin rights



Evaluation - Tor Browser Bundle

Basics Tor:

I Internet anonymization network

I Hides a user’s real IP adress

I Hundreds of thousands users every day

I Approx. 3000 servers run by volunteers

Tor Browser Bundle:
I Among other features: Uniform UserAgent

I to increase size of the anonymity set

I Everything prepackaged (Tor, Vidalia, Firefox, ...)

I Runs without admin rights



Evaluation - Tor Browser Bundle

Uniform UserAgent:

I Tor - Mozilla/5.0 (Windows NT 6.1; rv:5.0)
Gecko/20100101 Firefox/5.0

I Real - Mozilla/5.0 (X11; Linux x86 64; rv:9.0.1)
Gecko/20111222 Firefox/9.0.1

Vulnerable to Javascript Engine Fingerprinting?

I Yes!

I Every Firefox > 3.5 can be easily distinguished

I Can harm user privacy and decrease anonymity set

I However, not a real attack on Tor



Evaluation - Tor Browser Bundle

Uniform UserAgent:

I Tor - Mozilla/5.0 (Windows NT 6.1; rv:5.0)
Gecko/20100101 Firefox/5.0

I Real - Mozilla/5.0 (X11; Linux x86 64; rv:9.0.1)
Gecko/20111222 Firefox/9.0.1

Vulnerable to Javascript Engine Fingerprinting?

I Yes!

I Every Firefox > 3.5 can be easily distinguished

I Can harm user privacy and decrease anonymity set

I However, not a real attack on Tor



Evaluation - Tor Browser Bundle



Evaluation - Survey

Tested our fingerprinting with a survey:

I 189 participants

I Open for a few weeks in Summer 2011

I 10 test cases per browser in testset
I Testset:

I IE 8
I IE 9
I Chrome 10
I Firefox 4

Ground truth:

I UserAgent String

I Manual identification by participant



Evaluation - Survey

Tested our fingerprinting with a survey:

I 189 participants

I Open for a few weeks in Summer 2011

I 10 test cases per browser in testset
I Testset:

I IE 8
I IE 9
I Chrome 10
I Firefox 4

Ground truth:

I UserAgent String

I Manual identification by participant



Evaluation - Survey

Performance:

I All files: 24 Kilobytes

I Fingerprints: (4x) 2.500-3.000 Bytes

I 90 ms on average on PC

I 200 ms on average on smartphone

Results:
I 175 out of 189 browsers covered by testset

I 100 % detection rate
I No false positives!

I 14 not covered were mostly smartphones

I 1 UserAgent manipulation discovered



Evaluation - Survey

Performance:

I All files: 24 Kilobytes

I Fingerprints: (4x) 2.500-3.000 Bytes

I 90 ms on average on PC

I 200 ms on average on smartphone

Results:
I 175 out of 189 browsers covered by testset

I 100 % detection rate
I No false positives!

I 14 not covered were mostly smartphones

I 1 UserAgent manipulation discovered



Thank you for your time!

Questions?

mmulazzani@sba-research.org


	Motivation & Background
	JavaScript Engine Fingerprinting
	Methodology
	Minimal Fingerprints
	Decision Trees

	Evaluation
	Evaluation - Tor Browser Bundle
	Evaluation - Survey


