
Of contraseñas, ,סיסמאות! and 密密密码码码
Character encoding issues for web passwords

Joseph Bonneau
Computer Laboratory

University of Cambridge
jcb82@cl.cam.ac.uk

Rubin Xu
Computer Laboratory

University of Cambridge
rx201@cl.cam.ac.uk

Abstract—Password authentication remains ubiquitous on
the web, primarily because of its low cost and compatibility
with any device which allows a user to input text. Yet text is not
universal. Computers must use a character encoding system to
convert human-comprehensible writing into bits. We examine
for the first time the lingering effects of character encoding
on the password ecosystem. We report a number of bugs at
large websites which reveal that non-ASCII passwords are often
poorly supported, even by websites otherwise correctly sup-
porting the recommended Unicode/UTF-8 character encoding
system. We also study user behaviour through several leaked
data sets of passwords chosen by English, Chinese, Hebrew
and Spanish speakers as case studies. Our findings suggest
that most users still actively avoid using characters outside of
the original ASCII character set even when allowed to. Coping
strategies include transliterating non-ASCII passwords using
ASCII, changing keyboard mappings to produce nonsense
ASCII passwords, and using passwords consisting entirely of
numbers or of a geometric pattern on the keyboard. These
last two strategies may reduce resistance to guessing attacks
for passwords chosen by non-English speakers.

I. INTRODUCTION

Text passwords continue to dominate web authentication,
with their universality and ease of deployment being cited
as key factors behind their continued persistence [14], [19].
Yet the seemingly simple process of converting an abstract
secret stored in human memory [15] into bits suitable for
hashing and storage in a password scheme relies on several
conversions which are not universal.

First, users often use a natural language to express a
secret in the form of written text. Natural language is
not universal, of course, and the choice of language im-
pacts the authentication process. For example, a bilingual
user might equally choose the strings my_mom_loves_me
or mi_mama_me_ama to represent the same concept.
Similarly, even a monolingual user might choose dif-
ferent linguistic expressions of the same concept, such
as my_mother_loves_me, or an alternate representa-
tion of the same words of natural language such as
My-Mom-Loves-Me. Computers still struggle to under-
stand natural language, meaning that users must memorise a
secret concept, the precise wording used to express the secret
in some natural language and the exact textual representation

of that wording. This process is prone to failure and usability
studies suggest that a significant number of users will be un-
able to use a password they remember conceptually because
they cannot reproduce the precise representation [33].

A further conversion must take place to convert the
abstract concept of “text” into a sequence of bits suitable
for computer manipulation. For example, the letter m at the
beginning of the password above is commonly represented
using the eight bits 01101101. This process is known as
character encoding and, despite decades of work towards
a universal standard, there remain dozens of schemes in
widespread use to map characters into sequences of bits.

In principle, users should be able to choose any character
encoding scheme and servers can obliviously hash the bits
with no concern about their higher-level meaning. In prac-
tice, servers often are not oblivious to higher-level characters
and assume a specific encoding. The user’s browser and op-
erating system must also decide which encoding to transmit
a password with, which is not always straightforward and
can be handled differently by different browsers. As a result,
several edge cases still exist which prevent the use of some
natural-language characters at some websites.

Furthermore, the set of characters available may be limited
by the user’s system. Most computers, through both their
operating system and physical keyboard, are optimised for
inputting only a small set of characters. Entering other
characters might require either typing complicated sequences
of keys or selecting characters using a graphical interface
in addition to the keyboard. For some languages, notably
East Asian languages like Chinese, Japanese, and Korean,
entering characters routinely requires a graphical interface
to disambiguate the huge number of characters relative to
the number of keyboard keys.1 Graphical input methods
are undesirable for passwords because they are slower and
vulnerable to shoulder-surfing.

Thus, users face several obstacles when including char-

1There are alternatives to graphical entry. For example, the Wubi method
for typing Chinese requires typing a sequence of characters which represent
the individual strokes of a character. This method is much more complicated
to learn, however, and is falling out of favour as graphical entry using
language prediction has improved.

jcb82@cl.cam.ac.uk
rx201@cl.cam.ac.uk

acters in their passwords outside the legacy ASII set of
English-language letters, numerals and punctuation. Simi-
lar or even firmer restrictions exist for other elements of
Internet infrastructure, notably uniform resource identifiers
(URIs) [11], [12] and SMTP email addresses [20], [30],
which have traditionally only allowed a subset of the ASCII
characters to be used.2 To our knowledge, this paper is
the first attempt to examine character encoding problems
for the Internet’s password infrastructure. We’ll give a brief
summary of the technical aspects of character encoding on
the web in Section II. In Section III we’ll discuss restrictions
placed by websites on password encoding and several bugs
we identified. In Section IV we’ll analyse user behavior
using several data sets of leaked passwords.

II. OVERVIEW OF CHARACTER ENCODING

A. Brief history of character encoding

Encoding schemes to express characters numerically as
code points existed for use in teleprinters for decades prior
to the advent of the computer, dating at least to the original
Morse code (amongst others) for telegraph communication
which emerged in the 1840s.3 Fischer provides a complete
historical survey of character encoding [18]. Early computers
used different encoding schemes adapted from teleprinters,
leading to sufficient incompatibility that the ASCII (Ameri-
can Standard Code for Information Interchange) encoding
scheme was proposed in 1960 [8] and standardised by
1963 [1]. ASCII encodes 95 printable characters consisting
of 26 standard English letters and punctuation with 8 bits
each, using only the lower 7 bits for encoding and reserving
one bit for a parity check. This detail proved consequential
for passwords, as the UNIX crypt() function for pass-
word hashing [26] compresses up to eight ASCII characters
into a 56 bit DES key by discarding all of the parity bits.

ASCII was never intended as an international standard,
being inadequate even for most languages using variants
of the Latin alphabet. Various extensions were created
over the decades following its introduction. The ISO 646
standard [2], published in 1973, specified some code points
within ASCII as available for local use, enabling regional
variants like the UK’s BS 4730 [3] which replaces the #
character at code point 35 in ASCII with the £ character.

The number of reserved characters in ASCII is too small
to support most languages, leading to many 8-bit encodings
which omit the parity bit of ASCII to support 128 extra
characters. An influential example is the proprietary “code
page 437” scheme of the original IBM PCs, which added
many characters from Western European languages such
as the Spanish ñ at code point 164. The ISO 8859 series
of standards, first published in 1988, defined 16 standard

2Upgraded standards exist for both URIs [21] and email addresses [31]
to allow non-ASCII characters to be used, but neither is yet widely used.

3Even earlier than electric telegraphy, many character encoding systems
were developed for use with optical semaphores.

extensions labeled 8859-1 through 8859-16. ISO 8859-1 [4],
designed to encode Western European languages and often
called Latin-1, has been the most widespread on the Internet.

Meanwhile, languages with more complex writing sys-
tems developed multi-byte encodings to support more than
28 = 256 characters. In the 1980s, encodings were nation-
ally standardised for Chinese, Japanese, and Korean [24].
Distinct standards emerged for Simplified Chinese in the
People’s Republic of China (GB2312 and its successor
GBK) and Traditional Chinese in Taiwan, Singapore, and
Hong Kong (Big5).

Thus while there were standardised encodings for most
languages by the late 1980s they were generally incompat-
ible with each other, motivating the proposal of a univer-
sal character set by Becker in 1988 [7] under the name
“Unicode.” The first version of the Unicode standard was
published in 1991 [5]. The original version of Unicode, now
obsolete, planned to support only 216 code points and use a
constant 16 bits per character.

Starting with Unicode version 2.0, more than 216 code
points are defined, leading Pike and Thompson to propose
UTF-8 in 1993 [29]. UTF-8 is a variable-width encoding
scheme which is backwards-compatible with ASCII. The
first 128 code points (which map to identical characters by
design in ASCII and Unicode) are encoded directly as a
single byte, while higher code-points are represented by mul-
tiple bytes in a manner that allows for unambiguous decod-
ing. UTF-8 is now generally recognised as the international
standard encoding for all languages, with many standards
bodies like the IETF mandating UTF-8 support [22].

B. Character encoding on the web

Unfortunately, the development of Unicode and UTF-8
was slightly too late for the early growth of the World
Wide Web. In particular, the initial specification for HTML
specified ISO 8859-1 as the character encoding for all
HTML documents [9] and the initial HTTP specification
designated ISO 8859-1 as the default encoding [10]. RFCs
were quickly written for Internet support for languages like
Hebrew [28], Chinese [32], Japanese [27] and Korean [16],
none based on UTF-8. HTML specified a number of “charac-
ter entity references” to specify non-ASCII characters using
a sequence of ASCII characters, for example ñ
to indicate ñ. The standard also specifies “numeric entity
references” to specify any other characters not encoded in
ASCII. For example, ò and ò are also valid
representations of ñ based on its code point in Unicode (and
also ISO 8859-1).

HTML documents may directly include characters using
another encoding if this is declared, either with an HTTP
header such as:
Content-Type: text/html;charset=utf-8;
or through an HTML tag in the document header such as:

<meta http-equiv="Content-Type"
content"text/html; charset=utf-8" />

Nevertheless, content has often been served without spec-
ifying a character encoding using either method, requiring
web browsers to guess the encoding. Interpreting the encod-
ing of a document of unknown origin has been the subject
of academic research [23] and patents have been filed [25].

UTF-8 didn’t surpass ASCII (commonly written as US-
ASCII) as the most common encoding on the web until
2008 [17], though today it is estimated to be in use at
68.7% of websites [6]. ISO-8859-1 is still in use at 16.8%
of websites, while US-ASCII has crashed to just 0.1%.

C. Password submission

Passwords on the web are typically submitted using
an HTML <input type="password"> form element.
This hides the password from view as it is typed and
disables graphical input mechanisms. Browsers otherwise
handle the process of submitting a typed-in password to a
server identical to any other text in an HTML form. This
may require conversion if the user inputs characters in a
different encoding than that used by the server. Forms may
request submission using a particular encoding using the
accept-charset attribute, though we haven’t observed
this for password entry, leaving browsers to rely on the
character encoding they have used to render a form’s parent
HTML document.

Browsers cannot simply submit the encoded password
directly, however, as the 1994 standard for Uniform Re-
source Identifiers (URIs) [12] requires text to be “per-
cent encoded,” in which any byte value outside a lim-
ited subset of ASCII must be converted to percent sign
% followed by the byte value in hexadecimal. For ex-
ample, to include an ñ in a URI, it can be represented
as %C3%B1 (using UTF-8) or %F1 (using ISO 8859-1)
amongst other possibilities. If the submit method of a
form is GET or POST with enctype="application/
x-www-form-urlencoded", browsers must percent en-
code the password prior to submission. If the submit method
is POST with enctype="multipart/formdata",
browsers can directly send the password encoded as raw
bytes. This method is typically only used for forms which
include a user-uploaded file but we did observe it used for
several websites to receive password submissions.

The primary implication of this architecture is that pass-
words can be expanded into a large number of bytes per
character as a result of being replaced with a numeric entity
reference and being percent encoded. For example, the single
Chinese character 爱, (‘love’) will be expanded as follows
given different page encodings:

encoding submission length
GB2312 %B0%AE 6
UTF-8 %E7%88%B1 9

ISO 8859-1 %26%2329233%3B 14

If servers attempt to enforce length restrictions on pass-
word without distinguishing between bytes and characters
this can lead to errors, as discussed in Section III-C.

We have also found edge cases of different behaviour
between browsers. For example, in a page encoded us-
ing GB2312, there is no code point for the ñ charac-
ter so the browser must replace it with an entity refer-
ence. In our testing, Internet Explorer chose to transmit
%26ntilde%3B (ñ) while Chrome and Firefox
transmitted %26%23241%3B (ñ). Neither choice is
clearly endorsed by standards.

III. SERVER HANDLING OF PASSWORDS

In this section, we present findings from an informal
survey of web sites’ handling of non-ASCII passwords.
We overview several bugs, some with security implications,
resulting from servers not handling character encoding issues
properly. Our goal was not to quantify the frequency of
different server behaviour, but merely to identify unusual
implementations and bugs at some popular websites, which
was quite easy to do. We examined 24 sites, 12 primarily
English-language and 12 primarily Chinese-language, with
a mix of encodings at each site (about half UTF-8 and
half ISO-8859-1 or GB2312, respectively). All of the flaws
reported here were responsibly disclosed to the affected
websites prior to publication.

A. Correctly supporting sites

In our testing, we were able to seamlessly use a password
of over 100 non-ASCII characters at seven sites: Facebook,
Twitter, Wikipedia, CSDN, Renren and Kaixin001(UTF-8),
and DeviantArt (ISO-8859-1).

B. Policies against non-ASCII passwords

We found a total of 9 sites with an explicit policy barring
non-ASCII characters in passwords: Google, Microsoft Live,
Yahoo!, Amazon, Baidu, Taobao, Sina Weibo, Tianya and
Youku. Most of these policies are implemented using client-
side JavaScript which is possible to circumvent. We assume
that few users would override this check and didn’t test
if further checks were made server side.4 One Chinese-
language site, Taobao, uses special ActiveX control in place
of the normal password input to stop keylogging malware,
with a side effect that passwords cannot be pasted in.

C. Broken password length policies

Two sites that we tested, IMDB and WalMart, incor-
rectly enforce their length requirements by counting bytes
instead of characters. Both use the ISO-8859-1 encoding
and apparently don’t remove the percent encoding from
submitted passwords. Thus, as described in Section II-C,
individual UTF-8 characters can be escaped to as many as 14

4Servers should never assume client-side checking is successful, as this
could lead to vulnerabilities if checks are overridden.

bytes each. IMDB enforces a maximum length of 64 bytes,
restricting users to only 4 characters when not using ISO-
8859-1. WalMart enforces a length of 6–16 bytes, meaning
only a single non-ISO-8859-1 character can be used (or 2–5
non-ASCII ISO-8859-1 characters). This policy error both
restricts users from using longer passwords and allows them
to circumvent minimum length requirements easily.

D. Unicode code point truncation

Two top Chinese microblogging websites, Weibo and
QQ, hash the user’s password prior to transmission using
JavaScript. Both sites forbid non-ASCII passwords, but
don’t impose any restrictions on submitted passwords during
login, masking each character’s code point returned by
CharCodeAt() with 0xFF. As a result, all of the Unicode
characters a, Ł, s,5 �, 屁 will be considered equivalent in
a password because all have a code point ≡ 41 (mod 256).
This means that different typed-in passwords will be mis-
takenly accepted. Since only ASCII passwords are accepted
at either site, this is merely an oddity, though this could be a
security issue if a similar implementation were used at other
sites which allowed non-ASCII passwords.

E. DES-crypt() truncation

The popular Taiwanese gaming community site Gamer.
com.tw limits password length to 4–8 UTF-8 characters.
However, if the user enters a Chinese password such as 我
的中文得很好, they will be able to log in successfully by
sending only 我的中. The most likely explanation for the
8-character limit is that the server is using the obsolete DES-
based crypt() to hash passwords. Because DES uses 56
bit keys, DES-crypt() discards all but the first 8 bytes of
input, compressing them into a 56-bit key by truncating each
byte to 7 bits. The high-order bits of each byte, originally
reserved as a parity check in ASCII, are discarded.

At Gamer.com.tw, a user may register a Chinese password
of up to 8 characters, such as 我的中文得很好, but will
actually be able to log in successfully by sending only 我
的中. The first three characters of this password encoded in
UTF-8 take up 9 bytes by themselves, and DES-crypt()
ignores the remaining bytes.6 In fact the adversary only
needs to get the first 2 bytes of the last character right,
making the search even easier. In the worst case, the attacker
may only need to guess two characters if the user choose
characters which have a 4-byte UTF-8 encoding, which is
true for many Chinese characters. This is a security flaw
which might make guessing attacks much easier against
users choosing non-ASCII passwords.

5In this example, the s is a Cyrillic letter, encoded distinctly from the
visually similar Latin letter c.

6It appears that Gamer.com.tw correctly removes the percent-encoding
prior to using crypt(). The bug would be even worse otherwise,
potentially truncating all but the first character.

F. DES-crypt() string termination bug

Beyond the known limits on password length for DES-
crypt() discussed above, we discovered a common im-
plementation bug when processing non-ASCII characters:
passwords are truncated upon seeing either of the bytes
0x00 or 0x80, the latter of which can appear in the
middle of non-ASCII passwords. For example, in UTF-8,
the character À is represented by the two bytes 0xC380,
meaning that the passwords À and Àuseless will hash to
the same value because anything after À will be ignored.

The bug is caused by the way DES-crypt() copies
password to its internal buffer. Each byte is left-shifted by
one position to discard the ASCII parity bit before copying
to an internal buffer. Instead of checking for the termination
character 0x00 in the original password though, the internal
buffer is checked. As a result, any 0x80 byte terminates
the loop prematurely. We found this buggy implementation
in three widely-used software projects: FreeBSD’s stan-
dard C library, PHP7 and PostgresSQL. Though DES-based
crypt() is no longer used to hash system passwords, our
observation at Gamer.com.tw indicates it is still used at some
websites and other application software.

G. Removal of non-ASCII characters from passwords

Two websites we tested (Gawker and Mop) accepted
arbitrary UTF-8 passwords, but converted them at the server
to another encoding (presumably ASCII) with inconvertible
characters replaced with ?. Gawker’s problem lay in a faulty
Java library to implement bcrypt() called jcrypt().
Mop.com has a similar problem that does not properly han-
dle non-GBK characters. In either case, password guessing
is made easier as an adversary can replace any potential
characters outside the server’s encoding with the default ?,
making passwords like ?n an effective guess as they will
match any password with n non-codeable characters.

IV. USER CHOICE OF PASSWORDS

We now turn our attention to user choice of passwords,
which we study by analysing data sets of passwords leaked
from websites. We are limited to sets of cleartext passwords
because using password cracking tools to invert hashed
passwords would bias our observations of user choice.

A. Available data sets

We summarise the data sets we will study here. For
websites which were compromised in the past, we rely
on snapshots by the Internet Archive project to determine
character encodings at the time of the compromise.

• rockyou.com: RockYou is a social application devel-
oper which develops games for Facebook, MySpace,
and other online social networks. It was compromised

7PHP will use the system implementation of crypt() if available, but
it maintains its own fork of the BSD implementation.

Gamer.com.tw
Gamer.com.tw
rockyou.com

in December 2009 via SQL injection and 32 M pass-
words were leaked. The site appears to have always
used UTF-8. At the time of the leak its home page was
available in English, Spanish, Portuguese, Chinese, and
Thai. No password requirements were in place at the
time of the compromise.

• porn.com: Porn.com is a pornographic website which
offers premium accounts. It was compromised in June
2011 as part of the “50 Days of Lulz” hacking incident,
with about 25,000 usernames, emails, passwords, and
names leaked. The site is available in English only and
uses UTF-8. Passwords were required to be at least
three characters long.

• www.nato.int/cps/en/natolive/e-bookshop.htm: The
NATO e-Bookshop is a website for ordering and
downloading official publications of NATO, the North
Atlantic Treaty Organisation. It was compromised
in June 2011 as part of the “50 Days of Lulz”
hacking incident with about 10,000 usernames, emails,
passwords, and names leaked. The site is available
in English, French, Russian and Ukrainian and uses
UTF-8. No password requirements were observed.

• wonder-tree.com: Wonder-Tree is a small religious
meditation website. In May 2011 the site’s adminis-
trators accidentally made a text file of about 1,000
usernames, emails, passwords, and postal addresses
publicly accessible. The site is primarily in Hebrew
with some English translation. Interestingly, the site’s
home page uses the Windows-1252 (Hebrew) encoding
while the leaked data was entirely encoded in UTF-8.

• 70yx.com: 70yx is an online gaming website. A list of
10 million usernames and passwords were leaked as
part of a major Chinese hacking incident in December
2011. 70yx is available in Chinese only and uses
GB2312. It allows passwords of 6–16 characters from
the ASCII subset only.

• csdn.net: CSDN is a Chinese-language forum site for
software developers. A database of 6 million passwords
were leaked in the same 2011 incident as 70yx, claimed
to be a backup of the database of accounts from 2009.
CSDN is available in Chinese only. It uses UTF-8 and
imposes a 5-character minimum on passwords.

B. Types of characters chosen by users

In Table I, we provide an overview of the frequencies of
different character classes within our available data. Note
that all of our data sets were in effect encoded in UTF-
8, with the one site not using UTF-8 (70yx) restricting
users to ASCII characters for which the GB2312 encoding
is identical.

1) Malformed passwords: The RockYou data set was
the only one in which we observed passwords which were
not well-formed UTF-8 strings. There were only 256 such
passwords out of over 32M. It isn’t possible to conclusively

determine the encoding, particularly for short strings which
may use encodings in which every string is valid. A manual
inspection suggested that most of the non-UTF-8 passwords
were ISO 8859-n variants, particularly ISO 8859-1. This
might be due to non-compliant browsers submitting this
encoding despite the character set specified by the page.

2) Non-ASCII passwords: The vast majority of the pass-
words observed in all data sets consisted only of characters
in the traditional ASCII subset of UTF-8 (technically called
the Basic Latin block). The Wonder-Tree data set contained
about 2.5% passwords using characters outside of this range,
in all but one case using the Hebrew block of Unicode.8 In-
terestingly, 87.5% of the Wonder-Tree users did use Hebrew
characters in their username, indicating that the majority of
users actively decided not to use Hebrew characters in their
passwords despite Hebrew being their preferred language.

All other data sets had fewer than 0.01% passwords
containing non-ASCII characters. Still, the RockYou data set
had 18,031 such passwords. Of these, 58.1% only included
characters from the ISO-8859-1 (Latin-1) character set,
mostly consisting of accented Latin letters. The remainder
included a wide mixture, including Cyrillic, Greek, Hebrew,
Arabic, Chinese, Japanese, and Korean, indicating that some
tiny percentage of users do choose to use passwords in their
native writing system.

Interestingly, in the CSDN data set only a handful of the
non-ASCII passwords actually contained Chinese characters,
with roughly ten times more passwords consisting exclu-
sively of the black circle character , which may be an
artifact of a buggy password manager or due to misguided
copying of discreetly rendered passwords.

3) ASCII character preferences: Within the large major-
ity of exclusively-ASCII passwords, what is most striking
is a preference towards numeric-only passwords in the non-
English language data sets, as seen in Table I. Fewer than
16% of users at RockYou only used digits in their passwords
while 45–48% of users in the Chinese data sets did so.
The Hebrew users at Wonder-Tree were in the middle with
38% of passwords being numeric-only. Similarly, 53–60%
of users in the predominantly English data sets included at
least one number in their passwords, compared to 65% of
the Hebrew speakers and 87–90% of Chinese speakers.

A simple hypothesis to explain this phenomenon is that
the Hindu-Arabic numeral system (the written digits 0, 1,
. . . , 9) is commonly used in both written Hebrew and
Chinese,9 making the digits more familiar for users with
low fluency in English or other languages using the Latin
alphabet. For Hebrew speakers, there is a second advantage

8The lone exception was a password which was entirely ASCII except
for the special UTF-8 non-printing character which marks a change from
left-to-right to right-to-left text rendering, which may have been included
due to a copy-and-paste error.

9Both Hebrew and Chinese have separate numeral systems which are
used for ceremonial or historical purposes, but Hindu-Arabic numerals are
almost always used for practical applications.

porn.com
www.nato.int/cps/en/natolive/e-bookshop.htm
wonder-tree.com
70yx.com
csdn.net

digits 0–9 letters a–z letters A–Z alphanumeric adjacent
language site size all some all some all some all some keys
English RockYou 32575653 15.9% 54.0% 41.7% 80.6% 1.5% 5.9% 96.3% 100.0% 3.1%
English NATO Bookshop 11524 19.2% 53.4% 42.6% 78.6% 1.0% 10.3% 96.5% 100.0% 5.0%
English porn.com 25934 27.7% 60.5% 35.9% 70.2% 0.9% 5.9% 97.8% 99.9% 8.4%
Hebrew Wonder-Tree 1252 38.3% 65.3% 29.6% 54.6% 2.2% 5.7% 96.6% 98.1% 11.0%
Chinese 70yx 9072966 48.1% 90.8% 9.0% 50.7% 0.2% 1.0% 99.3% 100.0% 11.8%
Chinese csdn 6428630 45.0% 87.1% 11.7% 51.4% 0.5% 4.6% 98.3% 100.0% 11.2%

Table I
CHARACTER CHOICES IN LEAKED PASSWORD DATA SETS

that numbers can be typed on a multi-input keyboard without
switching the input mode from Hebrew to English. The
observed preference for numeric passwords may explain
earlier findings that many of the most common passwords
on the web are used by all language groups [13].

Also of note, the rate of using non-alphanumeric ASCII
characters, which include common English punctuation char-
acters, tends to be higher for the English-language data sets
than for the Chinese-language data sets (though it is very
low overall). Again, this may be a factor of less familiarity
with English/Latin punctuation amongst Chinese speakers of
lower English fluency.

Finally, we performed a simple test for passwords
which appear to be keyboard patterns such as qwerty
or 1qaz2wsx, listed as “adjacent keys” in Table I. For
each password, we tested if transitions between consecutive
characters (ignoring repeated characters) represented two
keys which are adjacent on a standard US keyboard.10 We
considered a password to consist of adjacent keys if at
least 75% of the transitions were adjacent on the keyboard,
admitting a few false positives such as sweety. The rate of
adjacent-key passwords was around 11% for the Chinese and
Hebrew passwords and only 3.1% in the RockYou data set.
Choosing a password as a geometric pattern may be another
coping mechanism for dealing with less-familiar characters.

Comparing guessing statistics (which are computable for
the larger distributions) indicates that the Chinese password
datasets are weaker against guessing attacks. Using the
metric G̃0.5, which measures the expected amount of work
required to break half of accounts in a guessing attack [13],
the CSDN passwords had 20.3 bits of strength and the 70yx
passwords only 15.7. For comparison, the RockYou pass-
words have 19.8 bits by this metric and a set of passwords
collected from Yahoo! users 21.6 bits [13]. By the metric
λ̃10, which measures the efficiency of an attacker limited to
just 10 guesses, the CSDN and 70yx passwords both had
just 6.6 bits of strength, compared to 8.9 and 9.1 bits for

10In mainland China, the US keyboard layout with no modifications is
standard. A separate “Chinese (Taiwan)” keyboard is used in Taiwan, Hong
Kong, and some other Chinese-speaking areas, but uses the standard US
layout with additional Zhuyin character labels on most keys. Similarly,
the standard Hebrew keyboard consists of the standard US keyboard with
additional Hebrew labels on most keys.

the RockYou and Yahoo! passwords. An interpretation of
this is that the tendency towards numeric passwords and
keyboard patterns makes limited dictionary attacks easier,
while it isn’t clear what the impact is on more-exhaustive
dictionary attacks.

C. Transliteration of passwords

We observed evidence in each data set of users actively
changing a word in their native language into ASCII.

1) Chinese: The Pinyin transliteration system is a stan-
dard means of transliterating Chinese characters into the
Latin alphabet. Because most Chinese speakers input Chi-
nese characters by typing Pinyin onto a Latin keyboard and
using recognition software, an obvious approach is for users
to simply type the Pinyin representation of a Chinese word
and use this as a password. We observe many examples
of this among the most common passwords, for example
“woaini” for 我爱你 (translating to “I love you”) and
“zhanghaomima” for 帐号密码 (“account & password”).

We tested each password in the data set for correctness
as a Pinyin word. Our method may have false positives
in that some valid Pinyin sequences like orange (噢染
个) represent a valid word in English (and many other
languages). Still, we found that relatively few passwords
were potentially valid Pinyin strings, with rates of 15.9%
and 14.5% in the 70yx and CSDN data sets, respectively.
Thus, even among the users not entering strictly numeric
passwords, the majority of users do not appear to be entering
Pinyin.

2) Hebrew: Unlike Chinese, most Hebrew speakers input
Hebrew characters directly using individual key presses,
with a standard Hebrew keyboard having 27 Hebrew letters
available as well as 26 English letters in a dual mapping.
Two users in the data set (out of just 28 using Hebrew
characters), for example, chose the passwords שדגכ|! and
שדגכעי! which correspond to asdf and asdfgh on the
Hebrew keyboard.

We manually found several examples of nonsense Latin
passwords which, when run through a reverse English-
Hebrew keyboard mapping, produced plausible Hebrew
phrases. For example, the password thigusnkcsu cor-
responds to the Hebrew מלבדו! עוד Nאי (“There is no one
else but him”), which is a biblical quote from the Book

password meaning proper transliterated ratio
ñ → n

contraseña password 408 218 34.8%
muñeca doll 197 354 64.2%
cariño affection, dear 104 153 59.5%
pequeña little (girl) 87 72 45.2%
teextraño I miss you 65 27 29.3%

á → a
teamomamá I love you mom 2 151 98.7%

ó → o
código code 5 110 95.7%

ú → u
música music 2 1447 99.9%

Table II
TRANSLITERATION OF SPANISH PASSWORDS, ROCKYOU DATA SET

of Deuteronomy (4:35). Passwords like these demonstrate
a coping strategy of typing a memorable Hebrew password
with the keyboard mapping switched to English to ensure
compatibility with legacy servers.

There are several closely-related standards for transliter-
ating Hebrew phonetically into the Latin alphabet. Many
examples exist of passwords which are the transliteration of
a Hebrew word. For example, two users chose the password
ahava, the transliteration of אהבה! (“love”). Unlike the
Pinyin system, reverse transliteration from arbitrary Latin
characters to Hebrew is always possible, so there is no
simple way to test the frequency of transliteration.

3) Spanish: While we don’t have a data set specifically
of Spanish-speaking users, we do find many likely Spanish
passwords11 within the RockYou data set. Spanish uses a
variant of the Latin alphabet very similar to English, with
the addition only12 of the letter ñ (regarded as a letter proper
and not an n with a diacritical mark) and the use of an acute
accent over the five vowels á, é, ı́, ó and ú to indicate
which syllable is stressed during pronunciation (unlike ñ
these are not considered separate letters). To transliterate to
the English alphabet, the stress accents are dropped and ñ
is replaced with n.

To quantify the habits of Spanish speakers when choosing
passwords, we identified a number of passwords in the
RockYou data set which were obvious candidates for translit-
eration: passwords containing a non-ASCII character with a
clear Spanish meaning, with both transliterated and original
form occurring at least twice each, and with the transliterated
version not being equivalent to any common English words
which would make transliteration appear more common

11We say “likely Spanish” because there are several languages closely re-
lated to Castilian Spanish including Catalan and Galician which share many
common words. Indeed, even the term “Spanish” (instead of “Castilian”)
can be politically controversial due to the complex historical relationship
between these languages. Spanish also shares many words with other com-
mon Romance languages like Portuguese, Italian, Romanian and French,
as well as many English loanwords.

12Some authorities consider ch as a single letter in Spanish, though as
of 2010 the Real Academia Española no longer endorses this and ch has
always been encoded as a c followed by an h and not as a ligature.

(ruling out cognates like américa and jesús).13 We list
some examples of the ratio of the proper version to the
transliterated version in Table II.

We found very few good examples including stress
accents, but those we did find were almost always
transliterated-. We also observed dozens of relatively com-
mon transliterated passwords for which the proper veresion
never appeared. For example, pajaro (bird) appeared 169
times while the proper pájaro was never observed. We
might conclude that our examples are in fact outliers and
the real rate of transliteration of stress accents is greater
than 99% for Spanish passwords. This is consistent with
the linguistic trend that Spanish speakers, particularly youth,
frequently drop stress accents when writing emails or text
messages, as meaning almost always remains clear.

In contrast, Spanish speakers seem relatively reluctant to
transliterate ñ, with the most common passwords retaining
the character a majority of the time.14 The rate varied
greatly between different passwords, variations which are
strongly statistically significant as measured by Fisher’s
exact test (p < 0.001). It is difficult to estimate an aggregate
transliteration rate for ñ, just as for the stress accents, be-
cause there are many linguistic collisions such as montaña
(“mountain” in Spanish, chosen 3 times) and montana (a
U.S. state, chosen 1,116 times) which bias the result.

The relative preference for retaining the ñ character may
be due to the stronger linguistic effect of converting ñ
→ n, which markedly changes a word’s pronunciation. A
more plausible explanation is that Spanish keyboards always
contain a key to directly type ñ, but usually require multiple
keys to type a stress accent.

V. CONCLUDING REMARKS

We’ve sought to explore the effects of character encod-
ing on passwords, a previously unexplored challenge of
human-computer authentication. While our study is mostly
exploratory and not a thorough quantitative analysis of all
possible effects, evidence suggests both that sites still fail to
support passwords using characters outside of those standard
in the English language, and that users rarely attempt to
do so. Authentication is a two-sided market and it is likely
that these two effects have formed a positive feedback loop.
While character encoding is finally beginning to converge on
a universal standard in UTF-8 and many sites now support
passwords in any script, it may take a long time to undo
decades of conditioning to avoid non-ASCII passwords.

Beyond the inherent cultural bias this entails, speakers
of non Latin-based languages appear much more likely

13Any apparently transliterated word might actually be a word in another
language—for example, pequena is a valid word in Portuguese (meaning
“small”) and carino in Italian (meaning “cute”). We limit ourselves to
ruling out valid words in English, the dominant language of the data set.

14We observed negligible numbers of users potentially transliterating ñ
→ ny. It’s harder to conclude this is a transliteration, as contrasenya
is the correct Catalan word for “password”.

to rely on numerals or keyboard patterns when choosing
passwords. This may weakens passwords against guessing
attacks, particular opportunistic online attacks attempting a
small number of common passwords. It also makes guessing
attacks universal, as an attacker can use numeric passwords
to avoid creating language-specific dictionaries for different
groups of users. Future work on password schemes should
keep internationalisation in mind and remember that ASCII
can only fully express the native language of a small
minority of the world’s population.

ACKNOWLEDGEMENTS

The authors thank Noam Szpiro for help interpreting He-
brew passwords and Claudia Diaz and Elsa Monica Treviño
Ramı́rez for help with Spanish passwords. Joseph Bonneau
is supported by the Gates Cambridge Trust.

REFERENCES

[1] American Standard Code for Information Interchange, June
1963. American Standards Association ASA X3.4-1963.

[2] 7-bit coded character set for information processing inter-
change. International Organisation for Standardisation, 1973.
International Standard ISO 646.

[3] Specification for UK 7-bit coded character set. British
Standards Institute BS 4730:1974, 1974.

[4] Information technology — 8-bit single-byte coded graphic
character sets — Part 1: Latin alphabet No. 1. International
Organisation for Standardisation, 1988. International Stan-
dard ISO 8859-1.

[5] The Unicode Standard, volume 1.0. Addison-Wesley, Read-
ing, MA, 1991.

[6] Usage of character encodings for websites. W3Techs Web
Technology Surveys, March 2012.

[7] J. D. Becker. Unicode 88. August 1988.

[8] R. W. Bemer. A proposal for character code compatability.
Communications of the ACM, 3:71–72, February 1960.

[9] T. Berners-Lee and D. Connolly. Hypertext Markup Language
- 2.0. IETF RFC 1866, 1995.

[10] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol — HTTP/1.0. IETF RFC 1945, 1996.

[11] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic Syntax. IETF RFC 3986,
January 2005.

[12] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform
Resource Locators (URL). IETF RFC 1738, 1994.

[13] J. Bonneau. The science of guessing: analyzing an
anonymized corpus of 70 million passwords. In SP ’12:
Proceedings of the 2012 IEEE Symposium on Security and
Privacy, 2012.

[14] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The
Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes. In SP ’12:
Proceedings of the 2012 IEEE Symposium on Security and
Privacy, 2012.

[15] A. S. Brown, E. Bracken, S. Zoccoli, and K. Douglas.
Generating and remembering passwords. Applied Cognitive
Psychology, 18(6):641–651, 2004.

[16] U. Choi, K. Chon, and H. Park. Korean Character Encoding
for Internet Messages. IETF RFC 1557, 1993.

[17] M. Davis. Moving to Unicode 5.1. Google Blog, May 2008.

[18] E. N. Fischer. The Evolution of Character Codes, 1874-1968.
www.pobox.com/∼enf/ascii/ascii.pdf, Acessed 2012.

[19] C. Herley and P. C. van Oorschot. A Research Agenda
Acknowledging the Persistence of Passwords. IEEE Security
and Privacy Magazine, 2012.

[20] J. Klensin. Simple Mail Transfer Protocol. IETF RFC 5321,
October 2008.

[21] J. Klensin. Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework. IETF RFC
5980, August 2010.

[22] M. Kuhn. UTF-8 and Unicode FAQ for Unix/Linux. http:
//www.cl.cam.ac.uk/∼mgk25/unicode.html, 1999.

[23] S. Li and K. Momoi. A composite approach to lan-
guage/encoding detection. 19th International Unicode Con-
ference, 2001.

[24] K. Lunde. CJKV Information Processing. O’Reilly, 1st

edition, 1999.

[25] D. Marple. System and method for determining a character
encoding scheme. US Patent No 6701320, 2002.

[26] R. Morris and K. Thompson. Password Security: A Case
History. Communications of the ACM, 22(11):594–597, 1979.

[27] J. Murai, M. Crispin, and E. van der Poel. Japanese Character
Encoding for Internet Messages. IETF RFC 1468, 1993.

[28] H. Nussbacher and Y. Bourvine. Hebrew Character Encoding
for Internet Messages. IETF RFC 1555, 1993.

[29] R. Pike and K. Thompson. Hello World. USENIX Winter
1993 Conference Proceedings, 1993.

[30] J. B. Postel. Simlpe Mail Transfer Protocol. IETF RFC 821,
1982.

[31] J. Yao and W. Mao. SMTP Extension for Internationalized
Email. IETF RFC 6531, February 2012.

[32] H. Zhu, D. Hu, Z. Wang, T. Kao, W. Chang, and M. Crispin.
Chinese Character Encoding for Internet Messages. IETF
RFC 1922, 1996.

[33] M. Zviran and W. J. Haga. A Comparison of Password Tech-
niques for Multilevel Authentication Mechanisms. Computer
Journal, 36(3):227–237, 1993.

www.pobox.com/~enf/ascii/ascii.pdf
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html

	Introduction
	Overview of character encoding
	Brief history of character encoding
	Character encoding on the web
	Password submission

	Server handling of passwords
	Correctly supporting sites
	Policies against non-ASCII passwords
	Broken password length policies
	Unicode code point truncation
	DES-crypt() truncation
	DES-crypt() string termination bug
	Removal of non-ASCII characters from passwords

	User choice of passwords
	Available data sets
	Types of characters chosen by users
	Malformed passwords
	Non-ASCII passwords
	ASCII character preferences

	Transliteration of passwords
	Chinese
	Hebrew
	Spanish

	Concluding remarks
	References

