
Self-Exfiltration: The Dangers of Browser-Enforced Information Flow Control

Eric Y. Chen, Sergey Gorbaty, Astha Singhal and Collin Jackson
Carnegie Mellon University

{eric.chen, sergey.gorbaty, collin.jackson}@sv.cmu.edu, astha.singhal@andrew.cmu.edu

Abstract—Since the early days of Netscape, browser vendors
and web security researchers have restricted out-going data
based on its destination. The security argument accompanying
these mechanisms is that they prevent sensitive user data
from being sent to the attacker’s domain. However, in this
paper, we show that regulating web information flow based
on its destination server is an inherently flawed security
practice. It is vulnerable to self-exfiltration attacks, where
an adversary stashes stolen information in the database of
a whitelisted site, then later independently connects to the
whitelisted site to retrieve the information. We describe eight
existing browser security mechanisms that are vulnerable to
these “self-exfiltration” attacks. Furthermore, we discovered
at least one exfiltration channel for each of the Alexa top
100 websites. None of the existing information flow control
mechanisms we surveyed are sufficient to protect data from
being leaked to the attacker. Our goal is to prevent browser
vendors and researchers from falling into this trap by designing
more systems that are vulnerable to self-exfiltration.

I. INTRODUCTION

As the World Wide Web matures into a ubiquitous comput-
ing platform, people are growing comfortable with sharing
their personal information with web applications they trust.
However, this casual sharing of information is accompanied
by serious privacy and security implications. Vulnerabilities
in web applications can lead to compromise of users’ sensitive
data, resulting in embarrassment, inconvenience, and financial
loss.

Some of the most prominent attacks that exist on the web
today are code injection attacks. In a code injection attack,
the adversary injects malicious JavaScript or HTML code
into a benign web page the user is viewing, allowing the
attacker to either perform sensitive actions on behalf of the
user or steal user’s sensitive information. In this paper, we
focus on the scenario where a code injection attack leads
to the exfiltration of users’ personal information, which we
refer to as a data-exfiltration attack.

Many browser vendors and researchers have come up
with solutions to protect users from data-exfiltration attacks.
However, much of the existing work is based on prohibiting
information flow to unauthorized web servers. This paper
presents a new class of data-exfiltration attacks that circum-
vent these existing defenses for data-exfiltration. To launch
this attack, the adversary first stores users’ information in
the database of a whitelisted site, then later independently
connects to the whitelisted site to retrieve the information.

Because the attack relies on exfiltrating users’ sensitive
information through either the victim website itself or another
whitelisted website, we call this attack a self-exfiltration
attack. We demonstrate that an adversary can launch self-
exfiltration attacks with or without executing JavaScript.

To successfully launch a self-exfiltration attack, the ad-
versary must utilize an existing channel on the whitelisted
website to store stolen information. To confirm whether
these exfiltration channels exist in real world websites, we
surveyed 100 websites and discovered at least one exfiltration
channel for each of these websites. We conclude that none
of these existing data-exfiltration defenses can protect real
world websites from self-exfiltration attacks.

Organization

Section II introduces data-exfiltration attacks, presents
existing defenses, and outlines the threat model assumed for
the rest of this paper. Section III introduces self exfiltration
attacks and details the steps required to launch such an attack.
Section IV presents the results of our survey. Section V
discusses possible solutions, and finally Section VI concludes.

II. DATA-EXFILTRATION

The desire to safeguard users’ information from untrusted
websites led to the creation of the most important security
feature in browsers – the same origin policy. The same
origin policy states that JavaScript from one origin should
not be able to read the private documents loaded from another
origin. Although this policy prevents adversaries from trivially
obtaining users’ information, it is by no means a panacea.
Countless attacks have been discovered that compromise
users’ data despite the same origin policy’s restrictions.

One way for an adversary to circumvent the same origin
policy is to steal sensitive information using cross site
scripting (XSS) attacks. Cross site scripting attacks happen
when an adversary is able to inject JavaScript code onto a
victim site’s page and lure the user into visiting this page.
When the user visits this malicious page, the attacker’s script
will execute in the context of the victim’s origin. At this
point, the attacker can exfiltrate any private data on that page
and can often use certain private data on that page (such as
CSRF tokens) to perform further unauthorized actions (e.g.
transfer money to the attacker’s account). For the rest of this
paper, we will focus on the first step of the attack where
the adversary simply wishes to obtain access to the sensitive



Data type Script attacker Non-script attacker
Cookie X

Password X X
CSRF Token X X

Capability-bearing URL X X
Personal data X X

Table I
PERSONAL DATA VULNERABLE TO A DATA-EXFILTRATION ATTACKS.

data. Table I lists examples of private data that can be stolen
by this attack. We proceed by describing these data types in
detail.

• Cookies – Cookies are commonly used as authentication
tokens. If an attacker manages to compromise a user’s
session cookie, she can subsequently impersonate the
user and initiate unauthorized transactions within the
same site. To protect session cookies from being
compromised by the adversary, many websites label
their cookies as “HttpOnly.” HttpOnly cookies cannot
be obtained using Javascript, hence a web attacker can
only steal a cookie if the HttpOnly flag is absent.

• Password – Most modern browsers offer password
managers that store users’ passwords for websites they
visit. These saved passwords will be automatically filled
in for future visits. An adversary could inject fraudulent
HTML elements into the victim’s website to trick the
browser’s password manager into exposing the user’s
login credentials.

• CSRF Tokens – Many websites use cross site request
forgery (CSRF) tokens to distinguish legitimate requests
from forgeries. In a nutshell, CSRF tokens are shared
secrets between the client and the server. The server will
only accept requests made from the client if the client
presents a valid CSRF token. This effectively prevents
malicious websites from tricking the victim’s browser
into issuing a bogus request. However, if the attacker
is able to obtain a CSRF token, she can use it to forge
requests, bypassing the existing defense.

• Capability-bearing URLs – Michal Zalewski sug-
gested in his blog post [1] that capability-bearing URLs
are also vulnerable to data theft. These capability-
bearing URLs are utilized by many web applications to
issue invitations, enable sharing of private user content,
and to implement single sign-on flows. If an adversary
is able to obtain a capability-bearing URL, she can gain
access to the user’s private data, or even worse, full
access to the user’s account.

• Personal Data – Many websites include users’ personal
information, such as their addresses, phone numbers,
content of their private emails, and even the contact
information of all their friends. This information is
extremely valuable to spammers and phishers.

We define a data exfiltration attack to be an attack

Data exfiltration defense Year of release
Navigator 3.0 1996

Noxes 2006
Dynamic tainting (Vogt et al.) 2007

SOMA 2008
HTTP Fences 2008

Content Security Policy 2010
Security Style Sheet 2011

Dynamic tainting (Jang et al.) 2011

Table II
EXISTING DEFENSES FOR DATA EXFILTRATION AND THEIR YEAR OF

RELEASE.

where the adversary exports user’s private data to a server
controlled by the attacker, possibly using a code injection
vulnerability. It has to be noted that although cross site
scripting vulnerabilities can lead to data exfiltration attacks,
an adversary doesn’t necessarily need JavaScript to exfiltrate
data. We will illustrate in Section III how an adversary can
exfiltrate data without executing any JavaScript.

A. Existing Defenses

Various defenses have been proposed to mitigate data-
exfiltration attacks by regulating outgoing data based on its
destination address. When the victim page makes a request
containing sensitive data to an unknown origin, the defense
mechanism will assume the request to be malicious and deny
it. Unfortunately, this does not solve the core of the problem;
the attacker can still export users’ confidential information to
a white-listed origin. For the rest of this section, we describe
the current mitigations for data-exfiltration (summarized in
Table II) and explain why they are insufficient to stop real
world adversaries.

Dynamic tainting is a technique that tracks the information
flow of sensitive data. The goal is to ensure sensitive data
is never sent to an unauthorized source. Dynamic tainting
of web-based data was first seen in Netscape Navigator
3.0 [2]. Users of Navigator 3.0 may enable the taint feature
to enforce that data loaded from one website will never
be exported to another website. Besides Netscape, many
academic researchers also proposed to use dynamic tainting
to mitigate web vulnerabilities. In a paper published in NDSS
2007 [3], Vogt et al. proposed to use dynamic tainting to
mitigate cross site scripting attacks. Most recently, Jang et
al. also suggested using dynamic taint tracking to protect
browser plugins from leaking sensitive user information [4].
Dynamic tainting requires the browser to differentiate be-
tween trustworthy and non-trustworthy sites, because it needs
to decide whether or not sensitive information should be sent.
However, the boundary of trustworthiness is not so clear;
the adversary can export the data to a trusted site, then later
independently connect to it to retrieve the information.

HTTP Fences [5] uses the term “information leak attack”
to describe data-exfiltration. It attempts to mitigate data-
exfiltration using a whitelist to enforce that sensitive data is
only sent to authorized servers. Similar to dynamic tainting,



HTTP fences has an implicit notion of which sites should be
trusted. This can be exploited by the attacker to first smuggle
data to a trusted website, then fetch the data through a
separate channel.

SOMA, Security Style Sheets, and Noxes [6]–[8] attempt
to prevent cross site scripting attacks using a whitelist to
determine which server the user is allowed to send data
to. SOMA and Security Style Sheets require site opera-
tors to approve external domains for sending or receiving
information. In contrast, Noxes acts as a web proxy and
uses both manual and automatically generated rules to filter
outgoing traffic. Unfortunately, all three papers make the same
assumption that cross site scripting attacks necessarily engage
in cross-domain communications, and by restricting malicious
outgoing requests, one can block cross site scripting attacks.
However, this assumption is not correct, because mitigating
data-exfiltration attacks is different from mitigating cross site
scripting attacks – a cross site scripting attacker can still
use JavaScript to perform unauthorized actions (e.g., using
JavaScript function calls to transfer money to the attacker’s
account), without leaking any sensitive data. In addition to
not being able to protect users from unauthorized actions,
neither of these systems can effectively defend users against
data-exfiltration attacks as well. Similar to previous examples,
the adversary can send data to a whitelisted origin and extract
the data independently using a channel visible to the attacker.

Content Security Policy (CSP) [9] was originally pro-
posed by Mozilla as a mitigation for cross site scripting
attacks. Since then, it has been adopted by Chrome and
Safari and has become a W3C specification. Websites
can opt-in to CSP by attaching a custom HTTP header,
X-Content-Security-Policy, with pages they serve.
The browser will enforce CSP policies indicated in the custom
header. One of the most important functionalities of CSP
is that it disables inline scripts by default, and only allows
JavaScript from authorized external script files to execute.
Although this mitigates the majority of cross site scripting
attacks, we show in Section III-A2 that the attacker can still
export users’ sensitive data using “HTML form injection
attack”, without running any JavaScript code. Recently, there
have been discussions on the W3 security mailing list to
create a CSP form post directive. The form post directive
enables websites to specify which origin they are allowed to
post the content of HTML forms to, in an attempt to prevent
form injection attacks. Unfortunately, we demonstrate in
Section III that the form directive is not sufficient to stop
form injection attacks. An attacker can post the form to a
white listed domain to bypass the CSP form directive.

B. Threat Model

This section describes the capability of the adversary that
we assume for the rest of this paper. A data-exfiltration at-
tacker is similar to a standard web attacker threat model [10],
where the adversary has a web server under her control,

and has the ability to lure the user into visiting her web
page. However, in addition to the traditional web attacker
model, a data-exfiltration attacker also has the ability to
inject her own code into the victim’s web page. This is a
realistic assumption, because most data-exfiltration defenses
are designed as alternatives to traditional XSS defenses.

Several data-exfiltration mitigations (e.g., Content Security
Policy) prevent injected JavaScript code from executing in
the victim’s page. Therefore, a data-exfiltration attacker may
or may not have the ability to execute JavaScript. We proceed
by dividing the adversary into two categories:

• Script attackers are adversaries who are able to inject
JavaScript code onto the victim’s page.

• Non-script attackers are adversaries who cannot inject
any JavaScript code, but can still inject non-JavaScript
code such as HTML elements or Cascading Style Sheets.

III. SELF-EXFILTRATION ATTACK

In this section, we investigate the shortcomings of existing
defenses. For each type of attacker described in Section II-B,
we present methods they can use to extract users’ sensitive
data. Furthermore, we outline a list of vulnerable channels
an adversary can use to export the collected information,
bypassing each of the systems discussed in Section II-A.

Data-exfiltration, like its name suggests, requires the
adversary to export the data out of the victim’s domain.
Hence, an obvious but naive approach to mitigate data-
exfiltration attacks would be to detect and block these
data exports. In fact, all previously discussed defenses
for data-exfiltration rely on preventing these data exports
from happening. Unfortunately, none of these defenses have
considered the scenario where the attacker chooses not to
export the data out of the victim’s domain, but instead, she
stores the sensitive data in a region of the victim’s domain
that is visible to the attacker.

To see how an adversary can launch this attack on a real
website, consider the following example:

1) Alice visits auction.com, an online auction website
that deploys a data-exfiltration protection discussed in
Section II-A.

2) Due to a code injection vulnerability, Mallory is able to
inject JavaScript code onto the page Alice is viewing,
and read Alice’s session cookie. However, due to the
data-exfiltration protection, Mallory is unable to send
Alice’s cookie to her own server using JavaScript.

3) Instead of exporting Alice’s cookie out of the auction
site, Mallory posts the cookie as a user comment to
one of her own auction items.

4) Mallory can now extract Alice’s cookie by viewing the
comments to her auction.

In this scenario, the adversary is able to exfiltrate user’s
data despite the existing data-exfiltration defense. This is
because all of the current protections for data-exfiltration



failed to consider that most websites contain pages visible
to the attacker; an attacker can extract user’s information
without explicitly sending the information to the attacker’s
server. Since this type of attack involves transferring user’s
private data to another region of the same website, we refer
to it as a self-exfiltration attack.

A. Obtaining the data

Before the adversary can export user’s sensitive data, she
must first obtain this data. In this section, we investigate the
techniques an attacker can use to obtain the data mentioned
in Table I. More specifically, we will focus on the two types
of adversaries described in section II-B, script attackers and
non-script attackers.

1) Script attacker: A script attacker has the ability to
execute JavaScript code in the victim’s origin. Because the
attacker and the victim share the same origin, the same
origin policy would permit the attacker to request and read
all contents of the victim’s origin. Using JavaScript, the
attacker can obtain all data described in Table I, including
the user’s session cookie (if the HttpOnly flag is absent),
CSRF tokens, sensitive URLs, profile information, and the
user’s password.

2) Non-script attacker: At first glance, it is not clear what
data a non-script attacker can obtain. Without JavaScript,
the adversary would not be able to read user’s cookie, or
access arbitrary content on the user’s page. However, a clever
non-script adversary can still obtain a considerable amount
of sensitive data even without executing JavaScript code. In
fact, a non-script attacker has the ability to gain access to
all of the data shown in Table I, with exception of cookies.

Before going into any details, we would like to make a
small disclaimer. After the initial distribution of this paper,
Gareth Heyes pointed out in his blog post [11] that the form
element injection attacks we discovered were, in fact, not new.
The attacks were openly discussed on sla.ckers.org many
years ago [12]. We humbly thank Gareth Heyes for informing
us about the history of these attacks. In the section below, we
present a more complete version of our original non-script
based attacks, incorporating ideas from the sla.ckers.org
community.

Base target overwrite – The HTML base element’s target
attribute can be used to set the window.name property of
all documents opened from hyperlinks. For instance, if the
webpage from http://cmu.edu sets its base target to the string
“CMU”, and if a user clicks on a hyperlink of this page, the
resulting page would have its windows.name property set to
“CMU”.

Unfortunately, one minor caveat of the base element makes
it a viable vector for non-script adversaries to steal sensitive
information. The caveat works as follows, when parsing the
target string, browsers will accept any characters, including
newline, that comes between two " character. Consider the
following code snippet:

<!--line 2 is the attacker's code--> 1

<base target=" 2

<script> 3

var secret=PRIVATE_INFO; 4

var name="Eric"; 5

In this example, the attacker injects the malicious code
in line 2. This target string consumes all HTML content
before the first " character in line 5. If a user clicks on an
attacker controlled hyperlink, the newly opened webpage
will be able to extract the value of the secret variable by
calling window.name.

Abusing HTML forms – Another common way for a non-
script attacker to extract users’ confidential information is by
using HTML forms. For readers who are unfamiliar with the
subject, an HTML form is a portion of an HTML document
that contains regular HTML content as well as user adjustable
fields called “controls”. Controls are HTML elements that
typically require user input, such as text fields, check boxes,
radio buttons, text areas, and password fields. Users complete
HTML forms by modifying the controls(e.g., fill in their
passwords), then submit the completed forms to web servers
via HTTP GET or POST requests. We demonstrate that
an adversary can steal users’ confidential information by
injecting or modifying HTML forms on the victim page; then
subsequently trick the user’s browser into leaking sensitive
information through form controls.

• Button formaction overwrite – According to the
HTML5 specification [13], the formaction attribute of
an HTML button can be used to overwrite the action
attribute of its parent form. Once overwritten, clicking
of the button would result the form data to be posted to
the location specified by the attacker. The code snippet
below demonstrates this attack:

<form action="update_info.php" 1

method="post"> 2

<input type="text" id="name" /> 3

<input type="text" id="addr" /> 4

<input type="text" id="creditcard" /> 5

6

<!--Beginning of attacker's code --> 7

<button formaction="http://evil.com"> 8

Button </button> 9

<style> #submit{visibility:hidden;} 10

</style> 11

<!--End of attacker's code --> 12

13

<input type="submit" 14

value="Real Button" /> 15

In this example, the attacker injects a bogus submit
button in line 8, and hides the real submit button using
the style sheet in line 10. When the user clicks on the
bogus submit button, all of her personal information
will be submitted to evil.com.



• Attack on text area – Another way to steal HTML
form data is by using HTML text area elements. This
attack is further enhanced by the relaxed policies
browsers employ when handling malformed HTML
content. When a browser detects a syntactically incorrect
HTML statement, instead of rejecting it as an error, it
will sometimes attempt to infer the correct syntax. A
non-script attacker can utilize this feature to lure the
user into exfiltrating their data with the following code:

<!--Beginning of attacker's code --> 1

<form action="comment.php" 2

method="post"> 3

<input type="submit" 4

value="Click to continue" /> 5

<textarea style="visibility:hidden;"> 6

<!--End of attacker's code --> 7

... 8

<!--User's sensitive data --> 9

... 10

In this example, the attacker first creates a form that
would post to a vulnerable region of the victim’s domain.
Inside the form tag, the attacker uses a half-opened
HTML text area tag to enclose user’s data; it is half-open
because the standard text area syntax requires a closing
tag (i.e., </textarea>) at the end of the enclosed content.
When the browser observes a half-open text area, it will
attempt to infer where the text area terminates. For most
browsers, the termination point is assumed to be at the
next text area closing tag, or at the end of the HTML
document. This indicates that unless the attacker’s code
is followed by another text area, all of the user’s private
data appearing after the attacker’s code will be contained
in text area. When the user clicks on the submit button,
all data inside this text area will be posted to the location
indicated by the attacker. We have confirmed this attack
for Chrome 16, Firefox 10, Safari 5, and IE 8.
It must be noted that this attack may work even if
browsers do not infer the end of a text area. Similar
to cross site style sheet attacks discovered by Huang
et al. [14], if the attacker is able to inject code before
and after the sensitive data, she can terminate the tag
herself.

• Attack on drop-down menu – Similar to the previous
attack on text areas, the option tag for HTML drop down
menus can also be used to consume sensitive data. To
launch the attack, the adversary would use a half-open
<option>tag to surround the sensitive HTML text that
comes after, as opposed to using a <textarea>tag in
the previous example.

• Attack on Password Manager – Most browsers have
password manager features that allow users to save their
passwords into the browser. The next time users visit
the same site, the browser will autofill the password
fields with the saved passwords. Different browsers

implement password managers differently, but this attack
is applicable to all password managers that autofill
passwords based on the URL of the page containing the
password. For example, Chrome’s password manager
would autofill a password if the current page shares
the same origin as the page where the password is
stored [15]. This implies that an adversary who is able
to inject a password field into an arbitrary page of the
victim’s domain can now exfiltrate user’s password if
she can lure the user into submitting the form.

A keen reader may notice that HTML form based attacks
rely on a successful phishing attempt. That is, these attacks
require users to trigger the malicious form submission.
However, unlike a traditional phishing attack, where the user
may detect the attack by carefully observing the browser’s
security indicators (e.g., the URL bar or the SSL lock
icon), form injection attacks are more difficult to detect
because the adversary resides on the same page as the victim.
Furthermore, the adversary can change the opacity and the
size of the button to make it completely transparent and cover
the entire page, triggering the malicious form submission
regardless of where the user clicks.

B. Exfiltrating the data

As the last step of a self-exfiltration attack, the adversary
must be able to store the user’s information to a location
that can be later read by the attacker. We will now describe
several channels in real world web applications that can be
utilized to bypass data-exfiltration protections:

• Public comment – Many popular websites such as
YouTube, Amazon, and CNN include comment sections
for content they serve. This allows users to discuss
videos, review books, or even participate in heated
debates about recent news events. Unfortunately, this
opens up a venue for self-exfiltration attacks. Once an
adversary obtains user’s sensitive information, she can
post this information as a publicly visible comment, and
later extract the information by viewing the comment
page in her own browser.

• Public profile – Many websites allow users to create
profiles that can be viewed by other users. This feature
is especially common among social networks and online
dating sites, where users have the option to disclose
their age, physical location, or even personal interests.
The adversary can abuse this feature to export stolen
data by posting it on the user’s public profile, then later
collect the data by viewing the profile.

• Private message/email invitation – Most websites with
user profiles also offer a private message feature, where
one user may directly contact another user by sending
them an in-site message that is only visible to the two
parties involved. Once the adversary obtains a user’s
confidential information, she can simply direct the user
(via JavaScript or HTML form post) to send a private



Figure 1. JavaScript based self-exfiltration attack used to steal victim’s Social Security Number (SSN).

message containing the sensitive information to the
attacker. Besides the private message feature, many sites
also offer the option to send an email invitation to your
friends. Similar to private messaging, an attacker can
also use the email feature to export sensitive data to
herself, bypassing any data-exfiltration defense.

• Attacker’s profile – Some websites contain user pro-
files, but these profiles are not visible to public; users
may only view their own profiles by logging into their
account. On the surface, it is not obvious how an
attacker can exfiltrate data through these private profiles.
However, a clever script attacker can override the user’s
session with her own to exfiltrate the sensitive data.
Figure 1 demonstrates an example of such an attack,
the attack can be done in the following steps:

1) User views a victim page containing the attacker’s
JavaScript code.

2) Attacker reads user’s sensitive data using
JavaScript.

3) Attacker overwrites the user’s session cookie with
an existing session cookie of the attacker. At this
point, any changes made to the user’s profile will
be made to the attacker’s profile instead.

4) Attacker stores (in her own profile) the sensitive
information she obtained earlier.

5) Attacker logs in to her own profile later and obtains
the user’s sensitive information.

This attack is possible due to the stateless nature of
HTTP, that is, the identity of the user is entirely linked
to her cookie. A script attacker can swap sessions with
any user by overwriting the user’s cookie with her own
session cookie.

• Search history – Many websites offer search features
similar to popular search engines. It is a common
practice for these sites to link each user’s search history
with their accounts, so users can view their search history

Types of websites surveyed Number of websites
Sites with JavaScript exfiltration channels 57

Sites with Non-JavaScript exfiltration channels 43
Sites without exfiltration channels 0

Table III
NUMBER OF SURVEYED WEBSITES CONTAINING EXFILTRATION

CHANNELS.

in a drop down menu by clicking on the search box.
However, similar to the previous attack, an adversary
could overwrite the user’s session with her own, then
post sensitive information as search queries. These
search queries can later be accessed by the attacker
by simply logging into her account and clicking on the
search box to display the most recent search queries.

IV. EVALUATION

To determine if most real world web applications contain
exfiltration channels for attackers to store stolen information,
we surveyed a total of 100 websites. These websites were
gathered from the Alexa top 100 global sites list. Since this
study required us to create an account on each website to
conduct manual analysis; we replaced all non-english sites,
adult sites, and sites that we cannot obtain an account for
(e.g., banks) with sites further down the Alexa’s top website
list.

For each website in our study, we assume that the attacker
has obtained the user’s private information through a code
injection attack. This is a realistic assumption because
many data-exfiltration defenses act as a replacement for
traditional JavaScript/HTML injection defenses deployed
by modern websites. Therefore, we must evaluate these
defenses individually in the absence of existing security
mechanisms. We proceed by analyzing if each site contains
a channel for the attacker to store stolen information, and
whether exploiting this channel requires JavaScript execution
capabilities. The results are shown in Table III. We managed



to discover a JavaScript based exfiltration channel for all
of the websites in our study. Additionally, 43% of these
channels can be exploited by a non-JavaScript attacker. We
discuss below some of the challenges we faced during our
study and how we resolved them.

• CSRF token – CSRF tokens are user-specific, session-
specific secrets that are sent with form submissions to
assist the server in verifying the user. An adversary
located on another website will not be able to make
unauthorized requests to the victim’s domain using
the secret token, because browsers’ same origin policy
prevents attacker’s scripts from obtaining the secret
token. A Self-exfiltration attack is somewhat similar
to a CSRF attack, because a self-exfiltration attacker
also attempts to make unauthorized state changes to the
victim’s web server. However, although CSRF tokens
can be used to mitigate cross site request forgery attacks,
they are ineffective against self-exfiltration attacks. This
is because unlike most CSRF attackers, a self-exfiltration
attacker is located on the same origin as the victim,
enabling them to obtain the secret token trivially using
JavaScript.

• CAPTCHA – Many websites require users to solve
CAPTCHAs before performing highly sensitive actions,
for the purpose of reducing spams and bogus user
accounts. CAPTCHAs are challenges posed to the user
to verify if they are human. By definition, an ideal
CAPTCHA cannot be solved by an automated JavaScript
program. This is problematic for a self-exfiltration
adversary because if the exfiltration channel (e.g., a
comment box) contains a CAPTCHA, then she would
not be able to export the data. Fortunately for the
attacker, CAPTCHAs have a major usability drawback,
that is, the conversion rate of web forms decrease
dramatically when users have to solve CAPTCHAs [16].
This discourages websites from deploying a large
number of CAPTCHAs. In our study, we were able
to discover one non-CAPTCHA exfiltration channel for
every website in our survey.

• AJAX – Many websites use Asynchronous JavaScript
and XML (AJAX) to commit changes to the server.
It may appear that JavaScript is required to exfiltrate
data for these AJAX-based sites. However, most AJAX
requests can be simulated with HTML form posts. In
our study, the only case where we failed to simulate
AJAX requests is when AJAX requests are accompanied
by CSRF tokens.

V. SOLUTIONS

We have demonstrated in previous sections that data-
exfiltration attacks cannot be mitigated by filtering outbound
requests based on their destination servers, because most
whitelisted web applications contain exfiltration channels the
attacker can use to smuggle stolen user data. In this section,

we turn to defense and discuss what a website has to do in
order to protect itself from data-exfiltration attacks.

One weakness in existing data-exfiltration defenses is
that the whitelist used to filter outbound requests is too
coarse-grained. That is, websites are only allowed to specify
the origin of outbound requests, not individual URLs. One
may argue that, by allowing websites to specify individual
URLs on the whitelist, an attacker would be prohibited from
transferring stolen data to a vulnerable region of the website.
Unfortunately, this finer-grained whitelist suffers from two
fatal drawbacks – First, web developers are required to
identify all valid URLs their web pages are allowed to send
requests to, including forms, images, or even user supplied
hyperlinks. Additionally, all whitelisted exfiltration channels
must be removed, such as comment sections, forums, private
messages, or profile pages. Because fulfilling both of these
requirements is highly impractical for any real world web
application, we urge web developers to make use of other
mitigations for data-exfiltration attacks, such as the ones we
describe below.

Instead of protecting users’ data from being stolen after
the occurrence of a code injection attack, websites can
attempt to prevent the code injection attack from occurring
in the first place. Content Security Policy [9], BEEP [17],
App Isolation [18] and XSS filters [19] can be used to
prohibit the attacker from injecting JavaScript into the
victim’s page. It is crucial to combine these systems with an
HTML sanitizer in order to address non-script based form
injection attacks. Alternatively, one may use context-sensitive
sanitization tools such as ScriptGard [20] or CSAS [21] to
automatically sanitize user input and eliminate any code
injection vulnerabilities.

The HTML5 iframe sandbox attribute [22] gives websites
the ability to isolate untrusted documents into iframes with
unique origins and with JavaScript disabled. Similar to other
cross site scripting mitigations, iframe sandbox by itself is not
sufficient to stop data-exfiltration attacks (e.g., the attacker
can still use a form injection attack to read sensitive data
in the sandboxed page). Therefore, other defenses (such as
an HTML sanitizer) must be used in conjunction with the
iframe sandbox to fully protect users from data-exfiltration
attacks.

VI. CONCLUSION

We have surveyed a number of data-exfiltration mitigations
that filter outbound requests based on their destination servers.
An adversary can bypass these protections with relative ease,
by stashing stolen data in a whitelisted database. To verify
our claim, we surveyed popular websites and confirmed
that self-exfiltration attacks are feasible to most real world
web applications. We urge future researchers to beware of
self-exfiltration attacks when designing defenses for data-
exfiltration.



REFERENCES

[1] M. Zalewski, “Notes from the post-XSS world,” http://lcamtuf.
coredump.cx/postxss/.

[2] D. Flanagan, JavaScript: The Definitive Guide, 4th Edition.
O’Reilly Media, 2001, chapter 20.4.

[3] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross-Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS)), 2007.

[4] D. Jang, A. Venkataraman, G. M. Sawka, and H. Shacham,
“Analyzing the Cross-domain Policies of Flash Applications,”
in Web 2.0 Security and Privacy (W2SP), 2011.

[5] S. Stamm, “HTTP fences: Immigration control for web pages,”
2008 Technical Report.

[6] T. Oda, G. Wurster, P. V. Oorschot, and A. Somayaji, “SOMA:
Mutual approval for included content in web pages,” in ACM
Conference on Computer and Communications Security, 2008.

[7] T. Oda and A. Somayaji, “Enhancing Web Page Security with
Security Style Sheets,” 2011 Technical Report.

[8] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a
client-side solution for mitigating cross-site scripting attacks,”
in Proceedings of the 2006 ACM symposium on Applied
computing (SAC ’06), 2006.

[9] S. Stamm, B. Sterne, and G. Markham, “Reining in the web
with content security policy,” in International Conference on
World Wide Web (WWW), 2010.

[10] A. Barth, C. Jackson, and J. C. Mitchell, “Securing browser
frame communication,” in Proceedings of the 17th USENIX
Security Symposium, 2008.

[11] G. Heyes, “HTML scriptless attacks,” http://www.thespanner.
co.uk/2011/12/21/html-scriptless-attacks/.

[12] “Sla.ckers XSS forum,” http://sla.ckers.org/forum/list.php?2/.

[13] “Attributes common to form controls,” http:
//dev.w3.org/html5/spec/attributes-common-to-form-controls.
html#attr-fs-formaction.

[14] L.-S. Huang, Z. Weinberg, C. Evans, and C. Jackson, “Pro-
tecting browsers from cross-origin CSS attacks,” in ACM Con-
ference on Computer and Communications Security (CCS)),
2010.

[15] A. Barth and T. Steele, “Security in depth: The
password manager,” http://blog.chromium.org/2008/12/
security-in-depth-password-manager.html.

[16] C. Henry, “CAPTCHAs’ effect on conversion rates,” http:
//www.seomoz.org/blog/captchas-affect-on-conversion-rates.

[17] T. Jim, N. Swamy, and M. Hicks, “Defeating script injec-
tion attacks with browser-enforced embedded policies,” in
International Conference on World Wide Web (WWW), 2007.

[18] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, “App
isolation: get the security of multiple browsers with just one,”
in CCS ’11: Proceedings of the 18th ACM conference on
Computer and communications security. New York, NY,
USA: ACM, 2011, pp. 227–238.

[19] D. Bates, A. Barth, and C. Jackson, “Regular expressions
considered harmful in client-side XSS filters,” in WWW ’10:
Proceedings of the 19th international conference on World
Wide Web. New York, NY, USA: ACM, 2010, pp. 91–100.

[20] P. Saxena, D. Molnar, and B. Livshits, “SCRIPTGARD:
automatic context-sensitive sanitization for large-scale legacy
web applications,” in CCS ’11: Proceedings of the 18th ACM
conference on Computer and Communications security. New
York, NY, USA: ACM, 2011, pp. 601–614.

[21] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-
sanitization in web templating languages using type qualifiers,”
in CCS ’11: Proceedings of the 18th ACM conference on
Computer and communications security. New York, NY,
USA: ACM, 2011, pp. 587–600.

[22] “The iframe element,” http://dev.w3.org/html5/spec/
the-iframe-element.html#attr-iframe-sandbox.


