MEASURING PRIVACY RISK IN ONLINE SOCIAL NETWORKS

Justin Becker, Hao Chen
UC Davis
May 2009
Motivating example

College admission

• Kaplan surveyed 320 admissions offices in 2008
• 1 in 10 admissions officers viewed applicants’ online profiles
• 38% said they had “negative impact” on applicants

If only we could measure privacy risk
Scale of Facebook

- 200 million active users
- 100 million users log on once a day
- 1 billion pieces of content shared each week
- More than 20 million users update their status daily

Will users take action?

Online survey using a simple tool

• Calculated privacy risk
 • Information revealed to third party applications
• Reported score to participant

• Results
 • 105 participants
 • 65% said they would change privacy settings
Demographics

• 47 men and 24 women

• The average age was 23.89 with
 – standard deviation of 6.1 and a range of 14-44.

• 12 different countries
 – Canada, China, Ecuador, Egypt, Iran, Malaysia, New Zealand, Pakistan, Singapore, South Africa, United Kingdom, United States
PrivAware

• A tool to
 – measure privacy risks
 – suggest user actions to alleviate privacy risks

• Developed using Facebook API
 – Can query user and direct friends profile information
 – Measures privacy risk attributed to social contacts
Threat model

- Let **user** \(t \) be the inference *target*.
- *Let* \(F \) *be the set of direct friends*.
- ***Infer*** the attributes of \(t \) from \(F \).
Threat model
Example

Can we derive a user affiliation from their friends?
Example
Example

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>32</td>
</tr>
<tr>
<td>Harvard</td>
<td>17</td>
</tr>
<tr>
<td>San Francisco</td>
<td>8</td>
</tr>
<tr>
<td>Silicon Valley</td>
<td>4</td>
</tr>
<tr>
<td>Berkeley</td>
<td>2</td>
</tr>
<tr>
<td>Google</td>
<td>2</td>
</tr>
<tr>
<td>Stanford</td>
<td>2</td>
</tr>
</tbody>
</table>
PrivAware implementation

• A user must agree to install PrivAware
• Due to Facebook’s liberal privacy policy

PrivAware can

 – Access the user’s profile
 – Access the profiles of all the user’s direct friends
Threats

1) Friend threat
 • Derive private attributes via mutual friends

2) Non-friend threat
 • Derive private attributes via friends public attributes
 • Derive private attributes via mutual friends

3) Malicious applications
 • Derive private attributes via friends public attributes
Inferring attributes

Algorithm: select the most frequent attribute value among the user’s friends

<table>
<thead>
<tr>
<th>Friend attributes</th>
<th>Inferred values</th>
</tr>
</thead>
</table>
| Education
[UC Davis:7, Stanford:2, UCLA:4] | Education
UC Davis |
| Employer
[Google:10, LLNL:8, Microsoft:2] | Employer
Google |
| Relationship
Married |
Evaluation metrics

1) Inferable attributes
 • Attribute can be inferred

2) Verifiable inferences
 • Inferred attributes can be validated against profile

3) Correct inferences
 • Verifiable inferences equals profile attribute
Validation example

<table>
<thead>
<tr>
<th>Classification</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred attributes</td>
<td>3</td>
</tr>
<tr>
<td>Verifiable inferences</td>
<td>2</td>
</tr>
<tr>
<td>Correct inferences</td>
<td>1</td>
</tr>
</tbody>
</table>

Inferred values
- Education: UC Davis
- Employer: Google
- Relationship status: Married

Actual values
- Education: UC Davis
- Employer: LLNL
Data disambiguation

Decide if different attribute values are **semantically equal**

Variants for University of California, Berkeley

- UC Berkeley
- Berkeley
- Cal
Approaches for Disambiguation

• Dictionary lookup
 • Keywords and synonyms
• Edit distance
 • Levenstein algorithm
• Named entity recognition
Social contacts

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total people</td>
<td>93</td>
</tr>
<tr>
<td>Total social contacts</td>
<td>12,523</td>
</tr>
<tr>
<td>Average social contacts / person</td>
<td>134</td>
</tr>
</tbody>
</table>
Inference results

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total inferred attributes</td>
<td>1,673</td>
</tr>
<tr>
<td>Total verifiable inferences</td>
<td>918</td>
</tr>
<tr>
<td>Total attributes correctly inferred</td>
<td>546</td>
</tr>
<tr>
<td>Correctly inferred</td>
<td>60%</td>
</tr>
</tbody>
</table>
Inference prevention

• Goals
 – Minimize the number of inferable attributes
 – Maximize the number of friends

• Approaches
 – Move risky friends into private groups
 – Delete risky friends
Inference prevention

• Optimal solution
 – Derive privacy scores for each permutation of friends, select permutation with the lowest score
 – Runtime complexity: $O(2^n)$
Inference prevention

• Heuristic approaches
 – Remove friends randomly
 – Remove friends with most attributes
 – Remove friends with most common friends
Related work

• To join or not to join: The illusion of privacy in social networks... [www2009]
• On the need for user-defined fine-grained access control...[CIKM 2008]
• Link privacy in social networks [SOSOC 2008]
• Privacy Protection for Social Networking Platforms [W2SP 2008]
Future work

• Improve existing algorithms
 – NLP techniques
 – Data mining applications
• Include additional threat models
 – User updates
 – Friends tagging content
 – Fan pages
• Expand into domains other than social networks
 – Email
 – Search
Conclusion

• Measure privacy risks caused by friends
• Improve privacy by identifying risky friends

On average, using the common friend heuristic, users need to delete or group **19 less users**, to meet their desired privacy level, **than randomly deleting** friends