
•••••

<input type="password"> must die!
Daniel Sandler Dan S. Wallach

Rice University
{dsandler,dwallach}@cs.rice.edu

Abstract

We propose that the HTML password input widget is
harmful to user security, as it draws attention away
from relevant security indicators, exposes a password’s
keystrokes to hidden client-side code, and generally con-
ditions users to supply sensitive information in insensitive
places. In this paper we advocate private password entry:
a mandatory, common authentication user experience that
allows the user to enter a password for any site in private,
free from snooping JavaScript. We describe a UI design
for private password entry called the password booth that
is backward-compatible with HTML login forms on most
existing websites. It can be used to provide timely and rel-
evant security indicators, as well as potentially unify and
enhance other advances in authentication on the web. We
hope that the password booth approach will, like a voting
booth or a bank-card PIN pad, become a security feature
that users come to expect for their own peace of mind.

1 Introduction

The typical internet user of five years ago might have en-
tered a username and password on a bank’s website, a
handful of e-commerce sites, and webmail. By contrast,
2008’s web constantly demands authentication, promising
personalization, social networking, advertising, and other
features tailored to the individual user. Many websites
even request a user’s password multiple times in a single
session; this is intended to be a security feature.

As a result, users are now regrettably quite accus-
tomed to typing their passwords wherever and whenever
requested. Developers have succeeded in training users
to divulge this identifying information on demand, and in
so doing, have desensitized users to its preciousness. It
is remarkably easy to accidentally give a valid password

to the wrong website, whether the user is being attacked
(i.e., phished) or has simply forgotten which of a handful
of passwords is the right one for a legitimate page.

More troubling still is the password field’s exposure
to JavaScript. Client-side code can extract the password
field’s contents and even snoop on keystrokes; this is true
even in cases where the JavaScript comes from a different
server than the main document. The result is that adver-
tising systems, web statistics services, and mashups can
silently capture password information from an otherwise
innocuous page before the user has even clicked “submit”
on a login form.

The HTML password input widget trains users to be
phished and exposes their passwords to hidden code; it
must therefore be considered deleterious to user security.
In this paper we advocate private password entry: a com-
mon authentication user experience that allows the user
to enter web passwords in private, free from snooping
JavaScript. The idea of a trusted dialog box is not new,
but we have found that such an interface is now urgently
needed for securing web logins. We sketch a design for
private password entry called the password booth that
works with conventional HTML login forms, and as a result
can be deployed immediately into WWW user-agents. The
password booth offers an excellent place to forefront secu-
rity indicators and warnings that are typically inconspic-
uous or too far removed from the password-entry context
to be relevant. The browser shows the booth whenever a
password field is encountered, so the user does not need to
remember to invoke security features explicitly, and lag-
gard websites (or malicious ones) may not opt out of the
security features.

The password booth idea is not revolutionary; it is,
however, a straightforward improvement that can be
adopted immediately in browsers. We hope that this ap-
proach to private password entry, as with a voting booth
or a bank-card PIN pad, will become a security feature that

1



users will come to expect for their own peace of mind.
In the next section we elaborate on the security issues

surrounding Web password input. In §3 we propose pri-
vate password entry as a useful and incremental remedy.
We discuss related work in §4 and conclude with §5.

2 Background

2.1 Password leakage

A “password leak” occurs whenever the user gives a pass-
word to a remote entity that should not receive it. This
may occur during an active attack on the user; a com-
mon example is a phishing attack, in which the user is
fooled (often via a targeted email masquerading as legiti-
mate correspondence) into logging into a forgery of a le-
gitimate website.

Passwords may also be leaked in an altogether innocu-
ous and, regrettably, quite common situation: when the
user forgets which of his many passwords he has used at
a given site. The authors can personally attest to typing
several high-security passwords into the same reputable
website while striving to remember which is the correct
one. While the remote party in this case is not an at-
tacker, it has still received passwords to which it should
not be privy, and those passwords can be considered to
have leaked.

In this paper we focus on password entry because, as
a general-purpose authentication token, a password typ-
ically provides access to more sensitive, “principal” se-
crets (e.g., US Social Security number, credit card or bank
numbers, information about children). Exacerbating the
problem is a sort of “secrecy fade effect:” while users are
suspicious about revealing principal secrets, they seem to
divulge passwords more readily, even if doing so would
allow the recipient access to principal information.

2.2 Security indicators

As a result of intensifying phishing and pharming ac-
tivity, browser security indicators have lately received a
great deal of attention and scrutiny, including a recent
study [11] suggesting that existing presentation is insuffi-
cient to the task of properly informing the user’s security
decisions. It is unclear, however, whether larger or more
obtrusive security indicators will ameliorate the problem.

We hypothesize that the central issue is one of locality.
That is, current security indicators are divorced from the
moment of critical information loss (i.e., password entry)
either by space or time (or both).

Spatial separation. The browser’s persistent security in-
dicators are designed to be unobtrusive. (Unneces-
sary interruption of everyday Web browsing poses
an irritation to the user, or worse, threatens to further
desensitize the user to security information.) An un-
fortunate consequence is that the relevant indicators
(e.g. SSL padlock, URL bar with domain name) are
far from most password input fields, and thus out of
the user’s focus while interacting with the password
form.

Temporal separation. Security warnings (for example,
about certificate validity) come either too early or
too late. That is, they appear when encountering
or submitting a form, not when typing a password
into that form. Early warnings—those presented be-
fore a form is shown—force a user to decide whether
to abandon progress or to bypass the warning to see
what is on the other side. The Emperor study [11]
indicates that users are quick to dismiss such a warn-
ing; we may speculate that this is at least in part due
to the perceived innocuousness of the proscribed ac-
tion (simply visiting a page). By the time the user en-
gages in risky behavior, namely, entering a password
on that page, the warning is long gone. Similarly,
if the page on which the form resides is unremark-
able but the destination of the form is questionable,
any warning issued to the user comes too late: his
keystrokes may have already been captured by mali-
cious code (as we will see in §2.3).

The end result, for the user, is that the critical security
warning is either “out of sight, out of mind” or “out of
time, out of mind.”

2.3 The all-seeing eye of JavaScript
Although characters entered may be obscured from view
to prevent shoulder-surfing, a password field appears to
JavaScript no different than any other form object in the
Document Object Model. Its current value may be read at
any time (using the .value DOM attribute), and handlers
may be registered on keyDown events so that keystrokes
may be captured. This means that any JavaScript code
running in the context of the current document can capture
information from any password input field, before any
forms have been submitted, and indeed as the password
is being typed. Phishing websites and pharming attacks
may take advantage of the same techniques to silently
add keylogging code to otherwise innocuous websites,
meaning that even if a user realizes she’s on an untrust-
worthy page before submitting her password, that pass-
word may already have been captured. This goes directly

2



counter to the user’s (quite reasonable) expectation that
her keystrokes are private until she clicks “submit.” If the
user checks for security indicators after typing a password
but before submitting a form, it is already too late.

Even trustworthy websites are at risk if they rely on
JavaScript from third parties. Whereas JavaScript execut-
ing in a document loaded in an <iframe> is disallowed
access to the DOM of the parent document unless the two
documents share a server origin, no such constraint is
applied to JavaScript code included by URL in the docu-
ment (i.e., via <script src="...">). Therefore, when
a website includes foreign JavaScript code on a page with
a password field, it implicitly trusts that code with its
users’ passwords. For example, the Twitter social mes-
saging service includes web statistics code from Google
Analytics on its main login page; this means, in effect,
that Google has access to all Twitter login credentials.

Perhaps Twitter passwords aren’t much to fuss over, but
we note that as of this writing:

Many websites (including Yahoo!, the Apple Store,
and E*Trade) use Akamai to host JavaScript on
pages that also include login forms.

E*Trade also includes JavaScript from
clickfacts.com on its login page.

PayPal’s front page (which includes a login form) in-
cludes JavaScript from doubleclick.net.

This is merely a cursory survey of different-origin
JavaScript on sensitive login forms. It is unknown just
how many websites—from newspapers to Web 2.0 ser-
vices to individual blogs—allow third-party JavaScript for
polls, pageview statistics, or advertising to share a page
with their login forms. In the advertising scenario, syn-
dication partnerships mean that advertisement JavaScript
may even come from a fourth party (the advertiser).

The potential for abuse is clear: a malicious piece of
JavaScript—whether included from a compromised third
party, installed on a victimized website via SQL injection,
included via a questionable mashup or or inserted in a
phishing page—has full access to password input. This
is particularly dangerous because of its invisibility and
counter-intuitiveness: even a security-minded user might
not consider that a form on a trusted page whose HTTP
POST target is another trusted page might be vulnerable.
No combination of security indicators will reveal the pres-
ence of such a covert channel. 1

1Note also that security indicators fail to inform about network con-
nections made by JavaScript during XMLHTTPRequests; this means the
security of login forms implemented as AJAX widgets cannot be accu-
rately conveyed to the user. Our instinct here is that AJAX login schemes

2.4 Whither HTTP authentication?

HTTP Basic and Digest authentication [6] are immune to
these problems, for their interaction with the user is en-
tirely external to HTML presentation and beyond the reach
of JavaScript. The conventional browser user interface for
this exchange is a graphical dialog box. It does not de-
liver password data to a form (where JavaScript may cap-
ture it), and it does attempt to provide an external, non-
spoofable experience. In this sense HTTP authentication
has the right idea: a password is requested from the user
and handed directly to the destination.

However, the design of this dialog may be replicated
with web content; even a rough approximation may be
enough to fool most users into typing a username and
password into a hostile environment posing as an HTTP
authentication dialog. Furthermore, some portions of the
HTTP authentication user interface are freeform and may
be filled by a malicious site with “comforting” informa-
tion that appears to come from the browser itself [9].

Finally, we note that HTTP authentication has been
largely abandoned by the web development community.
Digest-Auth, introduced as a security improvement over
Basic-Auth, suffers from interoperability problems [7].
Both authentication schemes have limited support for
controlling session duration (no obvious user interface
for logging out, for example). Perhaps most impor-
tantly, however, web developers have chosen <form>-
based login boxes over HTTP authentication because of
their presentation flexibility; forms can be styled and
branded to match the website instead of the user’s oper-
ating system. Regrettably, this decision offers users the
worst of all worlds: passwords sent in cleartext like Basic-
Auth, but in a phishing-friendly, mutable visual presenta-
tion that also allows JavaScript side channels.

3 The Password Booth

We believe that, given the foregoing, it is time to revisit
the safeguards in place to protect HTML form inputs—in
particular, password fields, the most sensitive of these—
during entry, and to properly inform the user when choices
must be made. While our ultimate goal must be a trusted
path from the user to the remote site, fully addressing
the general trusted-path problem will require backward-
incompatible changes (see § 4). We focus instead on
cutting a trusted “tunnel,” through untrusted client-side
JavaScript, that can be decorated with just-in-time secu-

are an effective and succinct demonstration of the very tenuous security
situation of password fields in the modern web.

3



<FORM>
aliceUser:

Pass:

••••PASSWORD:

(SECURITY INFORMATION)

SUBMITCANCEL

WEB CONTENT

PASSWORD BOOTH

HTTP(S) 
POST

Submit

1
2

34

Figure 1: Flow of the password booth. (1) The user gives focus to a conventional password field, but rather than being allowed to enter text, she
is taken to the private password entry interface where she may enter her password (2). From here she may submit the form (3) without returning to
the previous page, or cancel (4), returning to the previous form without providing it any information (even if a password was partially entered).

rity information to help the user make an informed deci-
sion.

To be practical and useful in the near term, any such
solution must be backward-compatible with existing web
sites. It must also be compulsory, so that the user does not
need to remember to explicitly invoke the security fea-
tures, and also so that a phishing attack cannot plausibly
claim that “our site’s security features are unavailable to-
day, please type your password.” It should also allow the
user to roam away from her primary machine without sac-
rificing all the security benefits of the system.

Our proposed solution is to deactivate the HTML pass-
word input widget altogether, so that the user is no longer
asked (or, indeed, able) to enter a password in arbitrary
unsafe environments. Its functionality is replaced by the
password booth, a design that provides a private pass-
word entry context for the user. Like a voting booth,
an ATM vestibule, or point-of-sale PIN pad, the password
booth is designed to provide the user with a “safe” envi-
ronment. In particular, in a password booth,

The user can comfortably enter a password without
fear of divulging it to any party but the intended POST
action listed in the <form>.

The system can provide critical security advisories
to the user relevant to the entry of a password.

This approach provides immediate benefits to any
site currently using conventional password entry based
on <input type="password">; it therefore composes
nicely with single sign-on systems (including OpenID) as
well as site-authentication systems (e.g., SiteKey; Yahoo!
Sign-in Seals).

We show the user’s flow through the password booth in
Figure 1 and describe its feature set below.

3.1 Functionality
Password entry. The password booth allows the user to
enter a password. The password’s characters can be ob-
scured as is customary, though this is not required (and
may even be counterproductive if we are to encourage
users to use longer pass phrases that require more care
to correctly enter).

Non-re-entrance. There are only two exits from the
password booth: Cancellation (returning to the current
page, without supplying any password data to it) and
submission (constructing and sending the HTTP POST re-
quest). The user’s password data must never be handed to
the possibly-insecure webpage on which the form resides.

Integration with HTML4. To be practical, a private
password entry solution must be compatible with exist-
ing web login forms and should require only minor im-
provements to browsers. The password booth can be inte-
grated into the browsing experience without modification
to most existing sites. When the user gives focus to a
password input field, the text editing behavior of the wid-
get is suppressed; instead, the password booth is displayed
(Figure 1). Use of the password booth is compulsory, thus
security is the default mode: the user does not need to in-
voke any special UI function to use it.

Websites with a conventional HTML form containing
a single password field need no modification; forms
that allow password input for purposes other than login
(e.g. setting passwords) may be modified not to use
type="password" inputs.2 Alternatively, we may pig-

2We must not be tempted to introduce an extension to HTML that in-
dicates that for a given password field, the booth should not be used. Our
goal is to forcibly eliminate insecure password entry, and a NOBOOTH ad-
dition to the password input would quickly be adopted by web develop-
ers uninterested in the password booth’s security features. Users would
consequently fail to develop a suspicion of pages that do not use the
booth.

4



Submit formCancel

PASSWORD BOOTH

•••
Your password will be submitted securely 
to the server www.paypal.com, a website 
you have visited 63 times before.

Password:

OK

PASSWORD BOOTH

Submit (not recommended) Cancel

•••
Your password will be submitted without 
encryption to the server www.p4yp4l.com, a 
website you have never visited before.

Submitting your password is not 
recommended unless you are absolutely sure 
that the www.p4yp4l.com site is safe.

Password:

!

(a) (b)

Figure 2: Security information in the password booth. In subfigure (a), the browser confirms that the form will be posted to paypal.com using
HTTPS. Additionally, since this is the user’s home machine, the browser is able to show that she has posted to this form in the past. Subfigure (b)
shows a more dangerous scenario; the browser recommends in this case that the user not provide her password.

gyback on the browser’s detection of a password-change
page (used in form auto-filling) and present a different,
multiple-field version of the booth.

Note that for login forms, the “submit” control is no
longer directly accessed by the user; only testing will tell
us if this is a problem for users, but it is a necessary side
effect of avoiding entry of password information in the
form itself. Additionally, forms that use JavaScript but-
tons to log the user in are fundamentally insecure and
must be replaced with conventional POSTed forms to al-
low private password entry.3

Security indicators. The moment when the user is en-
tering her password is the right time to forefront the secu-
rity properties of the current site and the form POST desti-
nation, including:

The domain name of the destination.
Whether the destination resides on a different domain
than the one originating the form.
Whether the destination is a https:// URL.
Relevant information from the site’s SSL certificate in
use (e.g., organization and signing authority).
If available, the number of times the user has logged
into this destination in the past.

Figure 2 sketches some of these security indicators as they
might be provided in the booth.

3 The trend toward JavaScript-based login forms is regrettable not
only for the security reasons we describe here, but also on the basis of
accessibility. Older browsers, mobile browsers, and users who have dis-
abled JavaScript are all prevented from using such a website. Backward-
incompatible and inaccessible features, frivolously introduced, are very
much not in the spirit of the WWW.

Externality; non-spoofability. The trustworthiness of
the password booth depends upon it being situated out-
side the usual HTML and DOM where foreign JavaScript
may impinge upon it. It is equally essential that the booth
be presented in such a way that web content may not repli-
cate its appearance, in so doing fooling the user into be-
lieving she is entering a password in a safe area. As we
have seen, the malleability of HTML presentation allows
phishers to carefully replicate legitimate websites, and it
is no less potent for mimicking native user interface ele-
ments. Possible techniques include integrating the booth
into the browser’s “chrome” (such as an expanding pane
among the existing browser control cluster), or using a
separate window whose design is not available to Web
content (e.g., a non-rectangular shape, or a full-screen
alpha-blended overlay). If the roaming requirement is re-
laxed, non-spoofability may be achieved using a per-user-
per-host secret such as the “personal image” proposed by
Dhamija and Tygar [5].

3.2 Future opportunities

The password booth is the first step in eliminating inse-
cure password entry. It offers a solution that can be de-
ployed now, incrementally, without modifying most web-
sites, and that offers protection for users entering pass-
words. It also hints at more sophisticated authentication
techniques that might be introduced in the private environ-
ment of the booth if we are willing to modify websites as
well. The promise of two-way authentication is particu-
larly appealing, as it may obviate many of the security in-
dicators currently required to decide whether a website is
trustworthy or not. §4 surveys current techniques that can
potentially be brought under the umbrella of private pass-

5



word entry. More broadly, it is safe to assume that any
further advances in web authentication will need trusted
UI, and the password booth is a step in that direction that
can provide benefits now and set user expectations for the
future.

4 Related Work
Some of the problems we have identified with password
input on the web have been addressed in prior work.
These solutions, broadly, fall into two categories: content-
based and browser-based approaches. We examine promi-
nent examples here.

4.1 Web-based solutions

Bank of America’s SiteKey [1] system is an example of an
early attempt at authenticating a site to the user before she
enters sensitive information. A SiteKey user registers an
image and a phrase with the authentic site; upon return-
ing to (what purports to be) the same site, she inputs her
username only. Unless the site responds to this challenge
with the user’s chosen image and text, the user should not
enter her password.

SiteKey has been shown to be vulnerable to man-in-
the-middle attacks [18], however, as it is straightforward
to request a user’s personal image from the server and then
re-present it to the unwitting user. Recognizing this vul-
nerability, locally-bound site authentication mechanisms
like the Yahoo! Sign-In Seal [2] bind the user’s security
image to the user’s computer (in fact, a particular browser
on said computer, via a cookie) instead of to a username.
This curbs the ability of an attacker to capture a user’s
chosen seal image. Unfortunately, due to the fragility of
the cookie-based approach, there are many benign reasons
that the sign-in seal may not appear even if the user is not
being phished [16]. This allows an attacker to simulate
one of these innocuous scenarios and request the user’s
password (along with a new seal image). Furthermore,
any solution that relies on cookies is awkward for roam-
ing; the user is shackled to her own computer if she wants
phishing protection.

OpenID4 is a decentralized authentication system. A
user creates an account with an identity provider, whose
URL she uses in lieu of a username when logging in
to a website. She is directed to log in with her iden-
tity provider using whatever mechanism the provider de-
mands (a username/password is common). Finally, she
is redirected (with the identity provider’s affidavit of her

4http://openid.net/

successful login) to her destination. Like many single
sign-on systems, OpenID is highly vulnerable to phish-
ing attacks that interpose themselves between the user
and her OpenID provider [8]. Therefore, when used with
password-based authentication, OpenID is exemplary of
the weak security of current web-based password entry.

4.2 Browser extensions

PwdHash [10] addresses the problems of password di-
versity and complexity by generating per-site passwords
based on a hash of the user’s (memorable) master pass-
word and the site’s domain name PwdHash elegantly re-
quires no modification to existing websites, but it has a
very severe roaming issue: the actual passwords it estab-
lishes with websites are unmemorable hash values. It is
therefore difficult to login to a website without your ac-
cess to your own computer; PwdHash proposes a public
“password calculator” service which users must trust and
learn how to use while on the road.

Passpet [17] combines the PwdHash technique with
personalization and automatic form filling. As such, it
frees the user from typing in passwords altogether, so she
cannot accidentally type them into a malicious form. Its
solution to the roaming problem is a server which stores a
user’s data. Trust issues aside, this is indeed effective for
systems that have Passpet installed, but if the software is
missing the user is not only afforded no security benefits,
she can’t log in at all (as with PwdHash).

The Web Wallet [14] extends the notion of saved
passwords (a common feature of modern browsers) to a
browser sidebar. The Web Wallet requires a user to press
a special security key to open the wallet, allowing her to
choose one of her personal ID cards from the wallet to in-
sert into a login form. Unfortunately, in addition to being
non-portable, the Web Wallet requires explicit invocation
by the user; the authors acknowledge that users have been
so effectively trained to type passwords directly into web
forms that it is difficult to remind them to take an addi-
tional step to activate security features.

Microsoft CardSpace (née InfoCard) combines
content-based and browser-based methods in service
of a larger identity metasystem [4] that manages a
user’s personal information, institutionally-assigned
identification data, and website authentication. This
is a vastly larger problem than the one we are trying
to tackle here, but the CardSpace solution shares our
insight that personal information must not be entered into
untrusted web forms but must instead be handled in a
safe local environment. It is worth noting that CardSpace
suffers from the same problems that other browser

6

http://openid.net/


extensions do (portability problems for roaming users;
must install additional software) as well as the problems
faced by content-based approaches (requiring substantial
modifications to websites wishing to participate).

Steiner et al. [12] integrated into SSL a protocol for mu-
tual authentication based on an encrypted key exchange
(EKE) zero-knowledge password protocol [3]. This ap-
proach allows the server to be convinced that the user
knows the proper password while even an active attacker
would learn nothing at all. More importantly, however,
it offers two-way authentication: the user has confidence
that the server also knows the user’s password (or some
derived value thereof). Dynamic Security Skins [5] ap-
ply a similar approach to web security, but instead use
changes in the browser’s user interface (determined pro-
grammatically from the results of the key exchange pro-
tocol) to give the user clues as to the authenticity of the
website. The Secure Remote Password (SRP) is a similar
eavesdropper-proof password protocol [15]; SRP-TLS, re-
cently proposed as RFC 5054 [13], integrates SRP as an
authentication method in the TLS standard; however, it is
not yet widely supported by web servers and not at all by
browsers.

These techniques are powerful, but deployment re-
quires modifications to both the server and client; more
importantly, it will necessitate a trustworthy password en-
try user interface not unlike the password booth. While
we wait for adoption of these more sophisticated authen-
tication schemes,5 we can begin accustoming users now
to the password booth for conventional <form> logins.

5 Conclusion

We have argued that <input type="password"> is a
detriment to user security. The power of HTML and
JavaScript is sufficient to allow any web developer to pre-
cisely mimic any website, which is sufficient for most
users to believe that the site is authentic. We have unfor-
tunately conditioned users of the web to type passwords
wherever and whenever they are asked.

This must end; we must give users a secure, private
place to enter passwords—the password booth—and train
them to feel unsafe entering passwords outside of the
booth. This naturally leads to explorations of how we
might eventually capture other sensitive information in
this secure space (in a way that will still offer some se-
curity when she is away from her primary computer). De-
signing this more general “web booth” is future work.

5Perhaps related to the pending expiration of relevant EKE-related
patents (U.S. Pat. #5,241,599 and #5,440,635).

We are currently working to implement the password
booth design as an extension for existing browsers, with
the intent to eventually build this mechanism into the
browser itself. The next step will be to perform a user
study to assess the password booth’s ability to alert users
to unsafe situations by focusing attention on security in-
formation when and where it is necessary.

The password booth is hardly a complete solution to the
threat of phishing and the problems of authentication on
the web, but it is a substantial step that can be taken with
minimal impact to existing websites and that may finally
make security indicators relevant.

Acknowledgments
This work was funded in part by NSF grants CNS-
0524211 and CNS-0509297. We thank the anonymous
reviewers for their critical notes and useful suggestions.

References
[1] SiteKey at Bank of America. http://www.bankofamerica.

com/privacy/sitekey/. Accessed February 2008.

[2] Yahoo! Security Center: What is a sign-in seal? http://
security.yahoo.com/article.html?aid=2006102507. Accessed
February 2008.

[3] S. M. Bellovin and M. Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary at-
tacks. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, Oakland, CA, May 1992.

[4] K. Cameron and M. B. Jones. Design rationale behind
the identity metasystem architecture, 2006. http://www.
identityblog.com/wp-content/resources/design_rationale.pdf.

[5] R. Dhamija and J. Tygar. The battle against phishing: Dy-
namic security skins. In Proceedings of the Symposium
on Usable Security and Privacy (SOUPS), Pittsburgh, PA,
July 2005.

[6] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP Authentica-
tion: Basic and Digest Access Authentication. RFC 2617
(Draft Standard), June 1999.

[7] J. Gregorio. Problems with http authentication interop,
Jan. 2006. http://bitworking.org/news/Problems_with_HTTP_
Authentication_Interop.

[8] B. Laurie. OpenID: Phishing heaven, Jan. 2007. http://
www.links.org/?p=187.

[9] A. Raff. Yet another dialog spoofing—Firefox basic au-
thentication, Jan. 2008. http://aviv.raffon.net/2008/01/02/
YetAnotherDialogSpoofingFirefoxBasicAuthentication.aspx.

[10] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using browser

7

http://www.bankofamerica.com/privacy/sitekey/
http://www.bankofamerica.com/privacy/sitekey/
http://security.yahoo.com/article.html?aid=2006102507
http://security.yahoo.com/article.html?aid=2006102507
http://www.identityblog.com/wp-content/resources/design_rationale.pdf
http://www.identityblog.com/wp-content/resources/design_rationale.pdf
http://bitworking.org/news/Problems_with_HTTP_Authentication_Interop
http://bitworking.org/news/Problems_with_HTTP_Authentication_Interop
http://www.links.org/?p=187
http://www.links.org/?p=187
http://aviv.raffon.net/2008/01/02/YetAnotherDialogSpoofingFirefoxBasicAuthentication.aspx
http://aviv.raffon.net/2008/01/02/YetAnotherDialogSpoofingFirefoxBasicAuthentication.aspx


extensions. In Proceedings of the 14th USENIX Security
Symposium, Aug. 2005.

[11] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
emperor’s new security indicators: An evaluation of web-
site authentication and the effect of role playing on usabil-
ity studies. In IEEE Symposium on Security and Privacy,
Oakland, CA, May 2007.

[12] M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure
password-based cipher suite for tls. ACM Transactions on
Information and System Security (TISSEC), 4(2):134–157,
May 2001.

[13] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Per-
rin. Using the Secure Remote Password (SRP) proto-
col for TLS authentication. RFC 5054, Nov. 2007. http:
//www.ietf.org/rfc/rfc5054.txt.

[14] M. Wu, R. C. Miller, and G. Little. Web wallet: Prevent-
ing phishing attacks by revealing user intentions. In Pro-
ceedings of the Symposium on Usable Security and Privacy
(SOUPS), Pittsburgh, PA, July 2006.

[15] T. Wu. The secure remote password protocol. In Pro-
ceedings of the 1998 Internet Society Network and Dis-
tributed System Security Symposium, pages 97–111, San
Diego, CA, Mar. 1998.

[16] Yahoo! I don’t see my sign-in seal. should i be
concerned? http://help.yahoo.com/l/us/yahoo/edit/privacy/
edit-35.html. Accessed February 2008.

[17] K.-P. Yee and K. Sitaker. Passpet: Convenient pass-
word management and phishing protection. In Proceed-
ings of the 2nd Symposium on Usable Security and Privacy
(SOUPS), Pittsburgh, PA, July 2006.

[18] J. Youtl. Fraud vulnerabilities in SiteKey security at
Bank of America. Technical report, Challenge/Response,
LLC, July 2006. http://www.cr-labs.com/publications/
SiteKey-20060718.pdf.

8

http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc5054.txt
http://help.yahoo.com/l/us/yahoo/edit/privacy/edit-35.html
http://help.yahoo.com/l/us/yahoo/edit/privacy/edit-35.html
http://www.cr-labs.com/publications/SiteKey-20060718.pdf
http://www.cr-labs.com/publications/SiteKey-20060718.pdf

	Introduction
	Background
	Password leakage
	Security indicators
	The all-seeing eye of JavaScript
	Whither HTTP authentication?

	The Password Booth
	Functionality
	Future opportunities

	Related Work
	Web-based solutions
	Browser extensions

	Conclusion

