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d Evasion Attacks (Biggio et al., ECML PKDD’13; Goodfellow et al.,
ICLR’15; Carlini & Wagner, S&P’17)

= Perturb inputs at the test time to induce model misclassifications.

 Poisoning Attacks (Biggio et al., ICML’12; Koh & Liang, ICML’17; Shafahi
et al., NeurlPS’18)

= Manipulate part of training data to compromise the trained models.



d Membership Inference (Shokri et al., S&P’17)

» Infer whether an input was used to trained the model or not.

d Property Inference (Ganju et al., CCS’18)

» _earn global property of training data.

d Model Inversion (Fredrikson et al., CCS’15)

* Reconstruct training data from model predictions.

 Malicious Training (Song et al., CCS’17)

* Modify the training algorithm to memorize sensitive information.



 Defenses against Security Vulnerabilities

Madry et al., “Towards deep learning models resistant to adversarial attacks”, ICLR’18;

Wong & Kolter, “Provable defenses against adversarial examples via the convex outer
adversarial polytope”, ICML’18;

Steinhardt et al., “Certified defense against data poisoning attacks”, NeurlPS’17;
Jagielski et al., “Poisoning attacks and countermeasures for regression learning”, S&P’18.

 Defenses against Privacy Vulnerabilities

» Nasr et al., “Machine learning with membership privacy using adversarial regularization”,
CCS’18;

» Shokri & Shmatikov, “Privacy-preserving deep learning”, CCS’15;
= Abadi et al., “Deep learning with differential privacy”, CCS’16.




1 Adversarial goal: cause model misclassifications at test time by
add small perturbations to inputs.
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1 Natural training to minimize prediction loss of model Fy.

1
min Z £(Fg(x),y)

0 |Dtrain |
(X,Y)ED¢train

 Adversarial example to maximize loss under the constraint A (e.g.,
1Al < €).

max £(Fp(x + 6), )

 Robust training to minimize adversarial loss.

1
min z max € (Fg(x +6),y)
6 |Dtrain|

OEA
(X,Y)ED¢train



1 Adversarial goal: guess whether an input example was used to
train the target model or not.

' (data record, class label)
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Shokri et al., “Membership Inference Attacks Against Machine Learning Models”, S&P’ 17 8



Membership Inference Attack Adversarial Robustness
[Input (feature vector, Iabel)] . ® 1t
e o ol oy
redic | ____L. E * i :—“*:“!
[Target Model Classification] i .L_'i.__-' N
Model output | L""'il o * H ) ¢ i
Membership Inference '""= -------- E";E':r'}
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O Highly related to target model’s O May result in more overfitting and
overfitting. larger model sensitivity.
U Also measured by model’'s L Make the model more susceptible

sensitivity as to training data. to membership inference attacks.
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4 Inference based on shadow training (Shokri et al., S&P’17)

training data Shadow members

Shadow Model 1 Outputs of
test data non-members

Training a binary

- - - classifier for
. . . membership
Inference
training data Shadow members

Shadow Model k Outputs of
test data non-members
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4 Inference based on prediction confidence (Yeom et al., CSF’18)

member, if F,(x) = 7;
non—member, otherwise

I(F, (x,y) ) ={

 Evaluate the worst-case inference risk by setting the threshold t to
achieve highest inference accuracy, which could be learned using
shadow training in practice.



O Sample the input (x, y) from either training dataset or test dataset
with an equal 50% probabillity.

 Evaluation Metrics: inference accuracy, precision, recall.

d Random guessing strategy results in 50% Inference accuracy and
50% precision.

1 Targeted adversarially robust models: adversarial training (Madry et
al., ICLR’18), and provable defense (Wong & Kolter, ICML’18).
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d Adversarial training makes models more susceptible to inference attack.
» CIFAR10 dataset: wide ResNet, robustly trained with the [, constraint € = 8/255
» SVHN dataset: wide ResNet, robustly trained with the [, constraint € = 4/255

CIFAR10 100% 95.01% 0% 0% 57.37% 54.16%  96.00%
(natural)
CIFAR10 99.99% 87.25% 96.07% 46.59% 74.86% 69.08%  90.00%
(robust)
SVHN 99.99% 95.64% 6.53% 3.86% 56.79% 53.72%  98.00%
(natural)
SVHN 99.99% 93.91% 99.74% 72.17% 64.30% 59.70%  88.00%
(robust)
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CIFAR10 2/255 64.40%
CIFAR10 4/255 69.34%
CIFAR10 8/255 74.86%
SVHN 21255 60.69%
SVHN 4/255 64.30%

SVHN 8/255 68.09%
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 Provable defense does not increase membership inference accuracy,
with a cost of accuracy degradation.
* CIFAR10 dataset: ResNet, robustly trained with the [, constraint € = 2/255
= SVHN dataset: CNN, robustly trained with the [, constraint ¢ = 0.1

CIFAR10 92.80% 85.15% 12.89% 12.63% 54.37% 52.67% 86.00%
(natural)

CIFAR10 68.57% 66.33% 61.25% 58.43% 51.11% 50.78%  72.00%
(robust)

SVHN 98.86% 84.01% 20.38% 16.64% 57.85% 54.45%  96.00%
(natural)

SVHN 82.06% 79.62% 68.55% 66.15% 51.00% 51.27%  40.00%
(robust)
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O Combine both security and privacy domains for machine learning
by measuring membership information leakage of adversarially robust
deep learning models.

= Adversarial Training

« More susceptible to membership inference attacks.

* Privacy leakage related to model’s robustness performance.
= Provable Defense

* No increase of vulnerability to membership inference attacks, with a significant drop in the
model’s predictive power.

d Think about security and privacy together.
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