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Deep Learning
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Image Classification

Natural Language Processing

Game Playing



Security Vulnerabilities of Deep Learning
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❑ Evasion Attacks (Biggio et al., ECML PKDD’13; Goodfellow et al., 
ICLR’15; Carlini & Wagner, S&P’17)

▪ Perturb inputs at the test time to induce model misclassifications.

❑ Poisoning Attacks (Biggio et al., ICML’12; Koh & Liang, ICML’17; Shafahi
et al., NeurIPS’18)

▪ Manipulate part of training data to compromise the trained models.



Privacy Vulnerabilities of Deep Learning
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❑ Membership Inference (Shokri et al., S&P’17)

▪ Infer whether an input was used to trained the model or not.

❑ Property Inference (Ganju et al., CCS’18)

▪ Learn global property of training data.

❑ Model Inversion (Fredrikson et al., CCS’15)

▪ Reconstruct training data from model predictions.

❑ Malicious Training (Song et al., CCS’17)

▪ Modify the training algorithm to memorize sensitive information.



❑ Defenses against Security Vulnerabilities
▪ Madry et al., “Towards deep learning models resistant to adversarial attacks”, ICLR’18;

▪ Wong & Kolter, “Provable defenses against adversarial examples via the convex outer 
adversarial polytope”, ICML’18;

▪ Steinhardt et al., “Certified defense against data poisoning attacks”, NeurIPS’17;

▪ Jagielski et al., “Poisoning attacks and countermeasures for regression learning”, S&P’18.

❑ Defenses against Privacy Vulnerabilities
▪ Nasr et al., “Machine learning with membership privacy using adversarial regularization”, 

CCS’18;

▪ Shokri & Shmatikov, “Privacy-preserving deep learning”, CCS’15;

▪ Abadi et al., “Deep learning with differential privacy”, CCS’16.

The security domain and the privacy domain 

typically have been considered separately!

Defenses to Mitigate Security & Privacy Vulnerabilities
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Adversarial Examples (Evasion Attacks)

6Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, ICLR’15

❑ Adversarial goal: cause model misclassifications at test time by 

add small perturbations to inputs.



Robustness against Adversarial Examples

7

❑ Natural training to minimize prediction loss of model 𝐹𝜃 .

min
𝜃

1

|𝐷𝑡𝑟𝑎𝑖𝑛|


(𝑥,𝑦)∈𝐷𝑡𝑟𝑎𝑖𝑛

ℓ(𝐹𝜃 𝑥 , 𝑦)

❑ Adversarial example to maximize loss under the constraint ∆ (e.g., 
∆ ∞ ≤ 𝜀). 

max
𝛿∈∆

ℓ(𝐹𝜃 𝑥 + 𝛿 , 𝑦)

❑ Robust training to minimize adversarial loss.

min
𝜃

1

|𝐷𝑡𝑟𝑎𝑖𝑛|


(𝑥,𝑦)∈𝐷𝑡𝑟𝑎𝑖𝑛

max
𝛿∈∆

ℓ(𝐹𝜃 𝑥 + 𝛿 , 𝑦)



Membership Inference

8Shokri et al., “Membership Inference Attacks Against Machine Learning Models”, S&P’ 17

❑ Adversarial goal: guess whether an input example was used to 

train the target model or not.



Membership Inference Attacks against Adversarially Robust Models

Membership Inference Attack

❑ Highly related to target model’s 
overfitting.

❑ Also measured by model’s 
sensitivity as to training data.

Adversarial Robustness
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❑ May result in more overfitting and 
larger model sensitivity.

❑ Make the model more susceptible 
to membership inference attacks.



Adversarially robust models may leak more privacy
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Robust CIFAR10 classifier (Madry et al., ICLR’18) Natural (undefended) CIFAR10 classifier

The robust model has a larger divergence between loss distributions 

over members (training data) and non-members (test data).



Membership Inference Attacks (black-box setting)
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❑ Inference based on shadow training (Shokri et al., S&P’17)
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Membership Inference Attacks (Our Choice)

❑ Inference based on prediction confidence (Yeom et al., CSF’18)

ℐ ℱ, 𝒙, 𝑦 = ቊ
member, if ℱ𝑦 𝒙 ≥ 𝜏;

non⎼member, otherwise

❑ Evaluate the worst-case inference risk by setting the threshold 𝜏 to 
achieve highest inference accuracy, which could be learned using 
shadow training in practice.



Membership Inference Attacks
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❑ Sample the input 𝒙, 𝑦 from either training dataset or test dataset 
with an equal 50% probability.

❑ Evaluation Metrics: inference accuracy, precision, recall.

❑ Random guessing strategy results in 50% inference accuracy and 
50% precision.

❑ Targeted adversarially robust models: adversarial training (Madry et 
al., ICLR’18), and provable defense (Wong & Kolter, ICML’18).



Inference Attacks against Adversarial Training (Madry et al., ICLR’18)
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❑ Adversarial training makes models more susceptible to inference attack.
▪ CIFAR10 dataset: wide ResNet, robustly trained with the 𝑙∞ constraint 𝜀 = 8/255

▪ SVHN dataset: wide ResNet, robustly trained with the 𝑙∞ constraint 𝜀 = 4/255

Models Train Acc Test Acc Adv-Train 

Acc

Adv-Test 

Acc

Infer Acc Precision Recall

CIFAR10 

(natural)

100% 95.01% 0% 0% 57.37% 54.16% 96.00%

CIFAR10  

(robust)

99.99% 87.25% 96.07% 46.59% 74.86% 69.08% 90.00%

SVHN 

(natural)

99.99% 95.64% 6.53% 3.86% 56.79% 53.72% 98.00%

SVHN 

(robust)

99.99% 93.91% 99.74% 72.17% 64.30% 59.70% 88.00%



Relation with Adversarial Perturbation Budget
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The robust model trained with a larger perturbation budget 

has an increased risk against membership inference attacks.

Datasets Perturbation 

Budget

Infer Acc

CIFAR10 2/255 64.40%

CIFAR10 4/255 69.34%

CIFAR10 8/255 74.86%

SVHN 2/255 60.69%

SVHN 4/255 64.30%

SVHN 8/255 68.09%



Inference Attacks against Provable Defense (Wong & Kolter, ICML’18)
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❑ Provable defense does not increase membership inference accuracy, 
with a cost of accuracy degradation.
▪ CIFAR10 dataset: ResNet, robustly trained with the 𝑙∞ constraint 𝜀 = 2/255

▪ SVHN dataset: CNN, robustly trained with the 𝑙∞ constraint 𝜀 = 0.1

Models Train Acc Test Acc Adv-Train 

Acc

Adv-Test 

Acc

Infer Acc Precision Recall

CIFAR10 

(natural)

92.80% 85.15% 12.89% 12.63% 54.37% 52.67% 86.00%

CIFAR10  

(robust)

68.57% 66.33% 61.25% 58.43% 51.11% 50.78% 72.00%

SVHN 

(natural)

98.86% 84.01% 20.38% 16.64% 57.85% 54.45% 96.00%

SVHN 

(robust)

82.06% 79.62% 68.55% 66.15% 51.00% 51.27% 40.00%



Summary
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❑ Combine both security and privacy domains for machine learning 
by measuring membership information leakage of adversarially robust 
deep learning models. 

▪ Adversarial Training

• More susceptible to membership inference attacks.

• Privacy leakage related to model’s robustness performance.

▪ Provable Defense

• No increase of vulnerability to membership inference attacks, with a significant drop in the 
model’s predictive power.

❑ Think about security and privacy together.


