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Learning in NTMA



Learning in NTMA – why?

The analysis of network traffic measurements is an active research
field.
Machine learning models are appealing since we have tons of data
and several problems to solve.
Some examples:

Traffic prediction and classification
Congestion control
Anomaly detection
Cybersecurity (e.g., malware detection, impersonation attacks)
QoE estimation
. . .
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Learning in NTMA – which kind of models?

Traditional –shallow– machine learning
models are commonly used.

Decision trees and random forest, SVM, k-NN,
DBSCAN... the list is as vast as the associated
literature.
Feature engineering needed!
Handcrafted-expert domain features are
critical to the success of the applied models.
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Learning in NTMA – Expert knowledge

Features are heavily dependant on the
expert background and the specific
problem.

Each paper in the literature defines its
own set of input features for the
considered problem, hindering
generalization and benchmarking of
different approaches.
Feature engineering is costly.
All in all, good results can be achieved.
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Deep Learning in NTMA

Can Deep Learning enhance the
presented limitations of
traditional models?
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This Work



This Work

Main goal: to explore the end-to-end application of deep learning
models to complement traditional approaches for NTMA, using
different representations of the input data.

To do this, malware traffic detection and classification problem is
addressed, using raw, bytestream-based data as input.
Research questions

1. Is it possible to achieve high detection accuracy with low false alarm
rates using the raw-input, deep learning-based models?

2. Are the proposed models better than the commonly used shallow
models, when feeding them all with raw inputs?

3. How good are these models as compared to traditional approaches,
where domain expert knowledge is used to build the set of features?
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Input Representations



Raw Packets

n bytes

b1,1 | b2,1 | b3,1 | b4,1 | · · · | bn,1

Decimal normalized representation of each byte of each packet is
considered as a different feature.

Each packet is considered as a different instance.
It is necessary to choose the number of bytes from the packet to be
considered (n).
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Raw Flows

n bytes

m
pa

ck
et

s

b1,m–1 | b2,m–2 | b3,m–3 | b4,m–4 | · · · | bn,m–1

b1,m | b2,m | b3,m | b4,m | · · · | bn,m

b1,2 | b2,2 | b3,2 | b4,2 | · · · | bn,2

b1,1 | b2,1 | b3,1 | b4,1 | · · · | bn,1

A group of bytes is considered as a different feature.

Each flow (group of packets) is considered as a different instance.
It is necessary to choose the number of bytes from the packet to
consider (n) and the number of packets per flow to consider (m).
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Building the Datasets



Building the Datasets

Malware and normal captures performed by the Stratosphere IPS
Project of the CTU University of Prague in Czech Republic were
considered.

Captures are gathered under controlled conditions: fixed scenario
(IPs, ports, etc.)
Not in the wild network traffic.
Let’s consider the payload, as the key information to analyze and to
build the datasets.
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Datasets for Malware Detection

Representation Dataset size n (bytes) m (packets)

Raw Packets 248, 850 1024 N/A

Raw Flows 67, 494 100 2

Table 1: Parameters selection for building the input representation for training
the deep learning models.
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Deep Learning Architectures



Deep Learning Architectures

Finding the right
architecture.
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Core layers

The core layers used for both models are basically two: convolutional
and recurrent.
Convolutional, to build the feature representation of the spatial data
inside the packets and flows.
The recurrent layers will be used together with the convolutional to
improve the performance of Raw Packets architecture, allowing the
model to keep track of temporal information.
Fully-connected layers to deal with the different combinations of the
features in order to arrive to the final decisions (i.e., classify).
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Helper layers

Goals: reduce the generalization error and improve the learning process.

Batch Normalization: layer inputs are normalized for each
mini-batch. As a result: higher learning rates can be used, model less
sensitive to initialization and also adds regularization.
Dropout: randomly drop units (along with their connections) from the
neural network during training. A very efficient way to perform model
averaging: similar to train a huge number of different networks and
average the results.
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Raw Packets Architecture

···

··· Output

C1: 1D-CNN layer
32 filters, size 5

Activation maps C1 Activation maps C2

Flatten
FC1:

200 units
FC2:

200 units

C2: 1D-CNN layer
64 filters, size 5

Byte vectorized 
packet of size 1024

MP: Max-Pooling 
1×8

Activation maps MP

LSTM: 200 
units + return 
full sequence

Activation maps 
LSTM

2 1D-CNN layers of 32 and 64 filters of size 5, respectively.
A max-pooling layer of size 8.
A LSTM layer of 200 units, returning the outputs of each cell.
2 fully-connected layers of 200 units each.
Binary cross-entropy is used as the loss function.
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Raw Flows Architecture

C1: 1D-CNN layer
32 filters, size 5

Activation maps C1

Flatten

Byte vectorized flow 
of size 100 1× ×2 ···

··· Output

FC1:
50 units

FC2:
100 units

Smaller capacity than Raw Packets (less number of features).
1 1D-CNN layer of 32 filters of size 5 and 2 fully-connected layers of 50
and 100 units each.
Also, binary cross-entropy is used as the loss function.
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Experimental Evaluation &
Results



Malware Detection

Malware Detection
A First Approach Using
Deep Learning
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Malware Detection: Raw Packets

Detect malware at packet level.

Raw Packets deep learning architecture trained using the respective
dataset version (∼ 250, 000 samples).
Split using a 80/10/10 schema: 80% for training, 10% for validation
and 10% for testing.
Training held over 100 epochs.
Adam used as the optimizer function, annealing the learning rate over
time.
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Malware Detection: Raw Packets
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Malware Detection: Raw Packets

Accuracy: 77.6% over the test.
Comparison with a random
forest model (100 trees), using
exactly the same input
features.
Raw Packets deep learning
model outperforms the
random forest one. 0 20 40 60 80 100
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Raw Packets (AUC = 0.84)
RF (AUC = 0.74)
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Malware Detection: Raw Flows

Detect malware at flow level.

Raw Flows deep learning architecture trained using the respective
dataset version (∼ 68, 000 samples).
Split using a 80/10/10 schema: 80% for training, 10% for validation
and 10% for testing.
Training held over 10 epochs.
Adam used as the optimizer function.
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Malware Detection: Raw Flows
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Malware Detection: Raw Flows

Accuracy: 98.6% over the test.
Comparison with random forest:
data was flattened in order to fit
the input.
Raw Flows model can detect as
much as 98% of all malware
flows with a FPR as low as 0.2%.
This suggests that operating at
flow level, Raw Flows can
actually provide highly accurate
results, applicable in practice.
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RF (AUC = 0.936)
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Domain knowledge vs. raw inputs

Domain knowledge vs. raw inputs

How good is Raw Flows as compared to a random forest trained with a
dataset made of expert-handcrafted features?

Flow-level features, such as: traffic throughput, packet sizes,
inter-arrival times, frequency of IP addresses and ports, transport
protocols and share of specific flags (e.g., SYN packets).
∼ 200 of these features were built to feed a random forest model.
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Domain knowledge vs. raw inputs

The random forest model using expert domain features achieves
highly accurate detection performance: ∼ 97% with FPR less than 1%.

The deep learning-based model using the Raw Flows still outperforms
this domain expert knowledge based detector.
The deep learning model can perform as good as a more traditional
shallow-model based detector for detection of malware flows, without
requiring any sort of expert handcrafted inputs.
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Other contributions

From Malware Detection
to Malware Classification
Please, refer to the paper for further
details.
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Conclusions

This work explores the power of deep learning models to the
analysis of network traffic measurements.

The specific problem of malware network traffic detection and
classification is addressed using raw representations of the input
network data.
Using Raw Flows as input for the deep learning models achieves
better results than using Raw Packets.
In all studied cases, the deep learning models outperform a strong
random forest model, using exactly the same input features.
The Raw Flows architecture slightly outperforms a random forest
model trained using expert domain knowledge features.
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THANKS for your attention!

Questions?

 @stillyawning
 gonzalo@tryolabs.com
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