

Activation Analysis of a Byte-based Deep Neural Network for Malware Classification

Scott Coull Sr. Manager, Data Science

Christopher Gardner Reverse Engineer

Byte-based Malware Classifiers

- Feature engineering for malware classification tasks is hard. Can deep learning do it for us?
- Convolutional neural networks (CNNs) automatically and efficiently learn feature representations directly from data
- Recent work has shown promising results competitive with (though not better than) traditional machine learning

- Accuracy: 90-96%, AUC: 0.96-0.98

Baseline

- 15.6M Windows PEs (80% goodware)
- July 2015 to July 2017
- Stratified sampling

Small

- 7.3M Windows PEs (50% goodware)
- July 2016 to November 2016
- No sampling

Baseline+Dropout

- Same data as Baseline
- Dropout layers before convolutional layers

Model Evaluation

	Trai	in Data	Test Results				
Model	Size	Mal:Good	F1	AUC			
Small	7.27M	50:50	0.943	0.98			
Baseline	15.62M	20:80	0.919	0.96			
Baseline+Dropout	15.62M	20:80	0.869	0.87			

16.55M binaries (50:50) from June 1, 2018 to August 31, 2018

Model trained on small dataset performs noticeably better despite older data and fewer samples

What are byte-based malware classifiers learning?

What is the impact of dataset volume and regularization on learned features?

Campello, Ricardo JGB, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates.
I. Borg and P. Groenen, Modern Multidimensional Scaling. Theory and Applications.
Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions.

Increase in number of outliers with more data/regularization Learned features appear to be less flexible

More data and regularization appears to lead to more features that are equally applicable across the two classes Supports earlier observation about feature specificity

Low-Level Feature Detectors

		Features						
	Model	Strings	Instructions					
Loose filters	Small	Filter 71: 'C', 'r', '@'	Filter 16: Push sequences					
	Sinan	(0x40f0c8L): tGenKey.	(0x10007edbL): je,0x10007ff1					
		(0x40f0d0L): CryptDec	(0x10007ee1L): push,0xff					
		(0x40f0d8L): rypt	(0x10007ee6L): push,edi					
		(0x40f0e0L): CryptEnc	(0x10007ee7L): push,0x10007ca5					
		(0x40f0e8L): rypt	(0x10007eecL): push,0x4					
	Basalina	Filter 83: 'r', 's'	Filter 57: Function calls					
	Daseime	(0x40d850L):GetP	(0x4046b4L): push,0x0					
		(0x40d858L): rocAddre	(0x4046b6L): push,0x0					
		(0x40d860L): ssR.Lo	(0x4046b8L): push,0x1					
		(0x40d868L): adLibrar	(0x4046baL): push,0x0					
		(0x40d870L): yAGl	(0x4046bcL): call,dword,15042					
	Recoline Dropout	Filter 11: 'Directory'	Filter 61: mov sequences					
D	Dasenne+D10p0ut	(0x40d9e0L): ctoryW	(0x408d65L): je, 0x408d6a					
		(0x40d9e8L): N.Create	(0x408d67L): mov, dword, edx					
Specific filters		(0x40d9f0L): ,Director	(0x408d6aL): mov, esi, dword					
		(0x40d9f8L): yWGe	(0x408d6dL): mov, dword, esi					
		(0x40da00L): tTempPat	(0x408d70L): mov, ecx, dword					
©2019 FireEve								

End-to-end features map closely to manual feature engineering

11

SHAP Values for WannaCry Worm

End-to-End Features

Data and regularization result in more focused areas of interest Model appears to learn presence/absence of structural features

The Case of the Rich Header

- Rich header is added by Microsoft's linker and contains metadata about the binary
- Should be effectively 'random' due to XOR encryption using key derived from checksum
- <u>Hypothesis</u>: Hierarchical pooling can detect presence of fixed bytes around header (e.g., 'Rich')
- Proxy for whether non-Microsoft compiler was used, which is common in malware

🕫 HxD - [C:\W	indow	is\Sy:	stem	32\c	alc.e	xe]											
📓 File Edit	Searc	h V	iew	Ana	lysis	Ext	ras	Win	dow	?							
🗋 🚵 🗸 🗐	Sum	CH .	<u>+</u> ++	16		•	AN	SI		-	he	x		-			
📓 calc.exe																	
Offset (h)) 00	01	02	03	04	05	06	07	08	09	OA	0B	oc	OD	0E	OF	
00000000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	MZÿÿ
00000010	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	,@
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	D8	00	00	00	ø
00000040	0E	1F	BA	0E	00	B4	09	CD	21	B8	01	4C	CD	21	54	68	º´.Í!,.LÍ!Th
00000050	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is program canno
00000060	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20	t be run in DOS
00000070	6D	6F	64	65	2E	0D	0D	0A	24	00	00	00	00	00	00	00	mode\$
00000080	08	73	A6	53	4C	12	C8	00	4C	12	C8	00	4C	12	C8	00	.s¦SL.É.L.É.L.É.
00000090	45	6A	5D	00	45	12	C 8	00	4C	12	C9	00	D8	13	C8	00	Ej].E.È.L.É.Ø.È.
000000A0	45	6A	5B	00	6D	12	C 8	00	45	6A	4B	00	57	12	C 8	00	Ej[.m.È.EjK.W.È.
000000B0	45	6A	4C	00	CE	12	C8	00	45	6A	5C	00	4D	12	C8	00	EjL.Î.È.Ej∖.M.È.
000000000	45	6A	59	00	4D	12	C 8	00	52	69	63	68	4C	12	C8	00	EjY.M.È.RichL.È.
00000D0	00	00	00	00	00	00	00	00	50	45	00	00	4C	01	04	00	PEL
000000E0	9D	97	E7	4C	00	00	00	00	00	00	00	00	EO	00	02	01	çLà
000000F0	0B	01	09	00	00	2E	05	00	00	A6	06	00	00	00	00	00	
00000100	6C	2D	01	00	00	10	00	00	00	20	05	00	00	00	00	01	1
00000110	00	10	00	00	00	02	00	00	06	00	01	00	06	00	01	00	
00000120	06	00	01	00	00	00	00	00	00	00	0C	00	00	04	00	00	
00000130	30	BD	0C	00	02	00	40	81	00	00	04	00	00	20	00	00	0+\$@
00000140	00	00	10	00	00	10	00	00	00	00	00	00	10	00	00	00	
00000150	00	00	00	00	00	00	00	00	FC	1A	05	00	54	01	00	00	üT
00000160	00	90	05	00	98	27	06	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	C0	0B	00	3C	3B	00	00	À<;
00000180	44	3C	05	00	38	00	00	00	00	00	00	00	00	00	00	00	D<8
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001A0	30	04	03	00	40	00	00	00	70	02	00	00	54	01	00	00	0@pT
000001B0	00	10	00	00	30	06	00	00	78	1A	05	00	40	00	00	00	0x@
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
Offset: 10																	Overwrite

Summary

- CNN architectures can learn meaningful features
 - Imports, presence of Rich header, incorrect checksums, etc.
 - Many features mimic manually-derived features from traditional ML models
 - Partly contradicts findings by Demetrio et al. on MalConv⁴
- Model depth, dataset, and hierarchical pooling appear to be key
- Malware classification performance relies on detecting malware indicators
 - Increased data and regularization lead to more specific features that were equally applicable across the two classes but worse detection performance

FireEye Data Science is Hiring!

- Data scientist positions open at the Senior, Staff, and Principal level
- Perform cutting-edge ML research and apply it to cybersecurity problems
- Work on problems from across the entire cybersecurity spectrum!
 - Threat Intelligence, Email, Network, Endpoint ...

Thank you!

- scott.coull@fireeye.com
- ♥@DrScottCoull
- https://scottcoull.com

